Titel: Fourneyron's Versuche über den Druk fließenden Wassers etc.
Autor: Fourneyron,
Fundstelle: 1844, Band 91, Nr. LXXIII. (S. 279–282)
URL: http://dingler.culture.hu-berlin.de/article/pj091/ar091073

LXXIII. Versuche zur Bestimmung des Drukes, welchen das bewegte Wasser gegen verschiedene senkrecht und schief gestellte Flächen ausübt, unter der Annahme daß diese Flächen unbeweglich und in einen als unbegränzt zu betrachtenden Strom gänzlich eingetaucht seyen; von Fourneyron.

Aus den Comptes rendus, 1843, Bd. XVII. S. 796.

Der Verfasser stellt die Resultate seiner Abhandlung in folgenden Hauptpunkten zusammen:

1) wenn man den Wirkungen eines frei fließenden Wasserstroms, nachdem man seinen Querschnitt und seine mittlere Geschwindigkeit gemessen hat, eine ebene Fläche unter allen möglichen Winkeln aussezt, so ändern sich die Verhältnisse: der Querschnitt und die Geschwindigkeit des Wassers nehmen andere Werthe an.

2) Die Wasseroberfläche erhebt sich oberhalb der gestoßenen Ebene, und diese Erhöhung ist ungefähr dem Flächeninhalt dieser Ebene multiplicirt mit dem Sinus des Einfallswinkels proportional, unter der Bedingung, daß die Wände des Canals senkrecht und hoch genug sind, damit das Wasser nirgends überfließen könne.

3) In dem Bereich der direct gegen die exponirte Fläche fließenden Wasserfäden vermindert sich die Geschwindigkeit des Wassers nach Maaßgabe des größer werdenden Einfallswinkels. Außerhalb dieses Stromtheils dagegen vermehrt sich die Geschwindigkeit merkbar.

4) Die mittlere aller Geschwindigkeiten, welche in einem 1 Meter und 1m, 50 oberhalb des Apparates befindlichen Querschnitt genommen werden, ist kleiner als die Geschwindigkeit vor dem Eintauchen der Fläche in den Strom; der Flächeninhalt des Querschnittes ist in demselben Verhältnisse größer, und das Product dieser beiden Größen gibt das ursprüngliche Volumen. Hieraus folgt, daß die Geschwindigkeit des Stromes vor Eintauchung der Stoßflächen nicht diejenige seyn kann, welche den Druk gegen die Flächen veranlaßt.

5) Die Spannung des Dynamometers, welche die Größe des Stoßes normal gegen die gestoßene Fläche mißt, vermehrt sich mit |280| dem Einfallswinkel zur Linken gemessen, von Null bis zu 90°, d. h. bis zu dem Moment, wo sich die Fläche perpendiculär zum Stoß stellt. In diesem Falle erreicht der Druk sein Maximum. Zwischen diesen beiden äußersten Stellungen war der Einfallswinkel beständig zur Linken; ich nenne dann den Stoß nach Thibault einen äußeren. Fährt man fort, die Ebene über 90° hinaus zu drehen, so geht der Einfallswinkel nach der rechten Seite über, und das äußere Ende der Ebene tritt gegen den Strom, indem es sich der Mauer nähert; in diesem Falle ist der Stoß ein innerer.

6) Für alle Einfallswinkel zur Rechten zwischen 90° und 37° wird der innere Stoß durch eine und dieselbe Spannung des Dynamometers gemessen, und diese Spannung ist derjenigen gleich, welche beim senkrechten Stoß ein Maximum wird. Von 90° bis 37° kann man daher den schiefen innern Stoß als constant und dem perpendiculären Stoß ungefähr gleich betrachten; ich sage ungefähr, weil es in der That den Anschein hat, als ob eine kleine Differenz existire, und der schiefe äußere Stoß für die innerhalb der von mir festgesezten Gränzen enthaltenen Winkel hie und da das Maximum in Beziehung auf den senkrechten Stoß merkbar überschreite. Allein diese Differenz, wenn sie überhaupt existirt, ist so gering, daß ich keinen Anstand nehme, das Resultat des Versuchs, so wie ich es oben ausgesprochen habe, anzunehmen.

7) Unter 37° vermindert sich die Stärke des schiefen inneren Stoßes mit dem Einfallswinkel, aber die Spannung des diesen Stoß messenden Dynamometers ist immer größer als die des schiefen äußeren Stoßes für einen gleichen Winkel. Das Verhältniß ist in gewissen Fällen näherungsweise wie 2 : 1.

Die Lage meines Apparates in der Nähe der einen Seite des Bachs hat mich in den Stand gesezt, in Betreff des inneren Stoßes wichtige Beobachtungen zu sammeln, welche ich nun darlegen werde. Hätten die Achse und die Stoßflächen eine große Entfernung von allen Wänden, so käme man auf den allgemeinen Fall des äußeren Stoßes, den Hauptgegenstand meiner Untersuchungen, zurük.

8) Wenn man, ohne die Aenderungen der Geschwindigkeit des Wassers bei jeder Veränderung der Lage der Stoßflächen in Rechnung zu ziehen, das Gesez studiren will, welches die Erfahrung bei der Wasserströmung und den Flächen die ich angewendet habe, bezeichnet, so läßt die graphische Darstellung der erlangten Resultate erkennen, daß wenn der perpendiculäre Stoß der Einheit gleich gesezt wird, der schiefe äußere Stoß immer kleiner als der Sinus des Einfallswinkels ist.

Der Unterschied zwischen diesem Sinus und dem durch die Erfahrung |281| gegebenen Werth des schiefen Stoßes wächst in dem Maaße, als sich der Winkel von 90° entfernt, zuerst rasch in der Nähe dieses Winkels, nachher aber, wenn der Einfallswinkel weniger als 75° beträgt, sehr langsam. Der Ausdruk

P (sin α - 0, 1 cos α)

in welchem. P den aus dem directen Stoß resultirenden Druk und α den Einfallswinkel zur Linken vorstellt, dürfte mit genügender Genauigkeit sämmtliche Resultate der von mir über den schiefen äußeren Stoß angestellten Versuche repräsentiren, und zwar für alle Winkel zwischen 10° und 90°.

Der schiefe innere Stoß würde für alle Winkel zur Rechten von 90° bis zu 37° = P seyn. Für die Winkel unter 37° wäre der Werth des schiefen inneren Stoßes durch den einfachen Ausdruk

1,67 P sin α

repräsentirt.

9) Die mittlere Geschwindigkeit, deren Fallhöhe dem Stoße proportional ist, gibt mit dem Querschnitt des die Stoßfläche umgebenden freien Raumes multiplicirt, ein Product gleich dem Volumen des in dem Bache fließenden Wassers.

10) Nimmt man als Grundlage der Berechnungen die mittlere Geschwindigkeit, so gelangt man zu folgendem sehr einfachen Resultat: der aus dem schiefen Stoße gegen eine ganz in den Wasserstrom getauchte Fläche resultirende Normaldruk verhält sich zu dem Druk gegen dieselbe senkrecht gestoßene Fläche, wie der Sinus des Einfallswinkels zum Halbmesser oder zu der Einheit.

11) Der Normaldruk, welcher aus dem Stoße des gegen unbewegliche und ganz eingetauchte Flächen bewegten Wassers resultirt, nimmt zu mit der Flächenausdehnung, mit dem Quadrate der Geschwindigkeit und mit dem einfachen Sinus des Einfallswinkels.

12) Der absolute Werth des aus dem Wasserstoß gegen eine eingetauchte Fläche resultirenden Drukes in Kilogrammen ist gleich dem Gewichte einer Wassersäule, welche zur Basis die gedrükte Oberfläche hat, und zur Höhe 0,52 der Fallhöhe, welche der mittleren Geschwindigkeit des die Fläche umgebenden Wasserstroms entspricht, dieses Gewicht mit dem Sinus des Einfallswinkels multiplicirt.

13) Enthalten die gedrükten Flächen in ihrer Mitte große Oeffnungen, so bieten sie weniger Widerstand dar; alles Uebrige verhält sich übrigens eben so, wie wenn sie voll wären. Ist der Stoß perpendiculär, so ist der gegen den soliden Theil der durchbrochenen Flächen gerichtete Druk nur ungefähr 9/10 des Drukes, welchen eine volle Fläche von gleichem Inhalte zu erleiden hätte. Bei Abnahme der Einfallswinkel vermindert er sich noch merkbar.

|282|

14) Für eine nicht ganz eingetauchte Fläche ist der absolute Druk kleiner als für eine eingetauchte Fläche; der Unterschied ist ungefähr 1/11, und er nimmt noch in dem Maaße zu, in welchem die Winkel kleiner werden.

15) Endlich wurde ein dreiseitiges Prisma mit horizontalen Kanten in den Strom getaucht. Beide dem Wasserstoß ausgesezte Flächen bildeten mit einer durch die vordere Kante gelegten Ebene gleiche Winkel von 26° 20′, die eine über, die andere unter dieser Ebene, und boten zusammen einen Flächeninhalt von 2,04 Quadratmeter dar. Unter diesem Umstand erfuhr das Prisma bei einer Geschwindigkeit von 1,7 Meter in der Secunde einen Druk von 89 Kilogrammen, während die Rechnung nach der früheren Theorie nicht einmal 40 Kilogramme gegeben hätte.

Suche im Journal   → Hilfe
Alternative Artikelansichten
  • XML
  • Textversion
    Dieser XML-Auszug (TEI P5) stellt die Grundlage für diesen Artikel.
  • BibTeX
Feedback

Art des Feedbacks:
Ihre E-Mail-Adresse:
Anmerkungen: