Titel: G. Schmidt, über Schröter's Untersuchung einer Compoundmaschine.
Autor: Anonymus
Fundstelle: 1881, Band 240 (S. 245–250)
URL: http://dingler.culture.hu-berlin.de/article/pj240/ar240087

Schröter's calorimetrische Untersuchung einer Compoundmaschine.1)

Gegenstand der calorimetrischen Untersuchung ist die von der Maschinenfabrik Augsburg gelieferte vorzügliche horizontale Compoundmaschine in der Augsburger Kammgarnspinnerei, über welche bereits in D. p. J. 1880 237 337 berichtet wurde. Die technische Lesewelt ist einer Unternehmung zu Dank verpflichtet, welche so umfassende Versuche, wie sie von Prof. M. Schröter an der Maschine und von Docent Dr. H. Bunte an den Kesseln angestellt wurden, ermöglicht, durch welche sowohl der fortschreitenden Praxis, wie der Theorie ein wesentlicher Dienst geleistet wird.

Die calorimetrische Untersuchung läſst an Gründlichkeit und Genauigkeit wenig zu wünschen übrig. Miſslungen ist nur die Bestimmung des Ausfluſscoefficienten für das Gefäſs, mittels welchen die von der Luftpumpe ausgegossene Wassermenge bestimmt wurde; allein auch hier läſst sich nachweisen, daſs die Versuche genau sind und nur der Ausfluſscoefficient mit einem für alle Versuche gleichen Fehler behaftet ist, dessen Ursache vielleicht später gefunden werden wird. Ferner muſs bemerkt werden, daſs für den kleinen Cylinder, um ein hohes Diagramm zu erhalten, eine etwas zu schwache Feder angewendet wurde, in Folge dessen die Massenwirkung des Indicatorkolbens in den Einzeldiagrammen, welche Professor Schröter dem Berichterstatter bereitwilligst zur Einsicht vorlegte, merklich ersichtlich ist, weil die Maschine 71 Touren in der Minute machte.2) In Folge dessen muſs zwar das ideale Indicatordiagramm, welches durch das von Schröter zuerst angewendete Mittelnehmen aller Einzelnordinaten erhalten wurde, bezüglich des Flächeninhaltes, also der Arbeit, als nahezu correct, höchstens um ½ Proc. zu groſs bezeichnet werden; aber der Füllungsgrad erscheint in demselben merklich zu groſs und die Expansionscurve sowie auch die Compressionscurve besitzt in dem idealen Diagramme nicht vollständig den Charakter, den sie in den Einzeldiagrammen |246| nach Ausgleichung der Unregelmäſsigkeit, welche von dem Indicator herrührt, besitzt, wie sich deutlich durch die Einzeichnung der Charakteristik3) erkennen läſst, welche bei dem Mitteldiagramm Fig. 2 Taf. IV im Civilingenieur, 1881 bis Ende des Kolbenweges sinkt, während sie bei den Einzeldiagrammen in der zweiten Hälfte des Kolbenweges horizontal verläuft oder schwach ansteigt, wie dies nur bei so ungewöhnlich trockenem Dampf vorkommen kann wie der hier verwendete. Alle anderen bisher untersuchten Diagramme von Maschinen mit und ohne Dampfmantel zeigen wegen stärkeren Nachdampfens ein oft bedeutendes Ansteigen der Charakteristik.

Daſs durch das Mittelnehmen aus den stark verschiedenen Compressionscurven vorn und hinten ein Verschwimmen der Compressionscurve mit der Gegendampfcurve eintrat, ist ganz erklärlich und soll deshalb nicht gemeint sein, daſs das mühsame Mittelnehmen ein anderes Mal entfallen sollte, wohl aber, daſs die Dampfgewichte m0, m0' genauer aus dem Volumen und der Spannung bei Beginn der Compression in den Einzeldiagrammen ermittelt werden könnten, um hieraus erst die Mittelwerthe der Dampfmenge in den schädlichen Räumen zu berechnen.

Der Berichterstatter glaubt auf Grund der Einzeldiagramme, daſs die aus den Werthen:

m0i0 = 5,86 7,23 7,29 6,63 7,32 7,37
m0i0' = 4,75 4,95 4,28 3,89 4,39 5,26
sich ergebende Differenz:
m0i0 – m0' i0' = 1,11 2,28 3,01 2,74 2,93 2,11

vielleicht auf die Hälfte zu vermindern wäre, wodurch der richtige Werth der Auspuffwärme e ziemlich auf jenen Werth fallen würde, welcher im Civilingenieur, 1881 S. 27 in Post 62 als ½ (ε1 + ε2) angegeben ist und welchen daher der Berichterstatter als den im Weiteren maſsgebenden Werth ansieht.

Weiters ist zu bemerken, daſs Schröter die latente Wärme r1 nicht entsprechend der Temperatur t1 bei Beginn der Expansion berechnet, auf den sich die condensirte Dampfmenge (m + m0 – m1) bezieht, aus welcher die während der Admission an die Wände abgegebene Wärmemenge:

Q1 = (m + m0m1) r1. . . . . . . . (a)

berechnet wird, sondern daſs er hierbei r1 entsprechend der mittleren Admissionstemperatur > t1, somit kleiner in Rechnung zieht, als es nach der bisherigen Auffassung geschehen ist, bei welcher so gerechnet wurde, als wäre die ganze Condensation während der Admissionsperiode bei constantem Enddruck derselben erfolgt. Es wird sich hiergegen |247| nichts stichhaltiges einwenden lassen und es ist auch zugegeben, daſs die Gleichung:

Q1 = Q0 + m0i0 – U1AL1 . . . . . (b)

den Werth von Q1 verläſslicher gibt als jene (a); allein die erhaltenen Zahlenreihen:

a) Q1 = 8,46 7,76 8,65 9,71 9,11 8,05
b) 8,35 7,59 8,49 9,54 8,88 9,28

stimmen so vorzüglich überein, daſs hierin ein Beweis für die Genauigkeit der Versuche und der richtigen Rechnungsweise liegt.

Wir begnügen uns, hier die Hauptergebnisse zusammen zu stellen.

Der Mantel des kleinen Cylinders ist mit circulirendem Dampf geheizt, jener des Receiver und des groſsen Cylinders dagegen mit stagnirendem. Letztere können also ausgeschaltet werden. Hierauf beziehen sich die 6 Versuche:

a und b, alle Mäntel wirksam, c Mantel am groſsen Cylinder ausgeschaltet,

d dieser und auch jener des Receiver ausgeschaltet,

e und f der Receiver von 119 auf 79 Procent des Volumens des groſsen Cylinders verkleinert und zwar

e sonst wie c,

f sonst wie a und b.

Der mit ε2 bezeichnete Hauptwerth der Auspuffwärme ε ist nach der Formel:

ε2 = Q0 + μr + m0 iU2' – A (L1 + L2) – α

gerechnet und durch den Nebenwerth:

ε1 = Q1 + μr – (AL1 + U2' – U1) α

controlirt. Es ergab sich:

ε1 = 7,34 7,25 12,66 13,84 13,41 9,02
ε2 = 7,22 7,08 12,50 13,67 13,18 10,22
––––––––––––––––––––––––––––––––––––––––––––
ε1ε2 = 0,12 0,17 0,16 0,17 0,23 – 1,20.

Die in hohem Grade überraschende Uebereinstimmung der beiden Werthe von ε, bezieh. der geringe Werth der Verification δ1 = ε1ε2 erscheint um so mehr ein Beweis für die Sorgfalt der Versuche, als nach der zuerst erfolgten Veröffentlichung im 1. Heft des Civilingenieur diese Uebereinstimmung noch nicht zu Tage trat, weil daselbst in der Formel für ε2 nach der bisher üblich gewesenen irrigen Darstellung das Glied m0' m0' statt m0 i0 eingesetzt war. Trotz dieser Uebereinstimmung erachtet Berichterstatter aus dem angeführten Grunde und auch, weil die obigen Werthe von ε hinreichen würden, um alles an den Wänden befindliche Wasser zu verdampfen, zu hoch und die früheren Mittelwerthe von:

ε = 6,73 6,02 11,07 12,38 11,78 8,56

als wahrscheinlicher.

Nach diesen Mittelwerthen ergab sich, daſs den Wandungen des groſsen Cylinders für je 1k bei Beginn des Auspuffes in den Condensator an denselben vorhandenen Wassers bei wirksamen Dampfmänteln Versuch a, b und f im Mittel 507° und bei ausgeschaltetem Dampfmantel Versuch c, d und e im Mittel 462° entzogen werden, welche nicht ganz aber nahe hinreichen, um die vorhandene Wassermenge zu verdampfen.

|248|

In dem Betrag von ε ist auch jene geringe Wärmemenge enthalten, welche der auspuffende Dampf dem Cylinder und seinem Dampfmantel beim Kolbenrückgang entzieht und in den Condensator überführt. In diesem geringfügigen Verluste kann man den einzigen Nachtheil des Dampfmantels am groſsen Cylinder erblicken, welcher Nachtheil aber reichlichst dadurch aufgewogen wird, daſs diese Wassermenge bei Versuch a und b im Mittel nur 13 Procent des in dem groſsen Cylinder befindlichen Gemenges von Dampf und Wasser beträgt, bei verkleinertem Receiver-Versuch f diese Wassermenge schon auf 18,5 Proc. und bei ausgeschaltetem Dampfmantel Versuch c, d und e sogar auf 26 Procent stieg, wonach |also auf (100 – 13) = 87 Theile Dampf (87 : 74) × 26 = 30,3 Theile Wasser entfallen, d.h. die frühere Wassermenge von 13 Proc. mehr als verdoppelt wurde. Deshalb beträgt auch die Auspuffwärme € bei Versuch a, b nur 11,3 Procent der gesammten zugeführten Wärmemenge Q = Q0 + μr, bei Versuch f schon 16,2 Proc. und bei Versuch c, d und e im Mittel 21,2 Proc. Die Unterschiede zwischen den letzteren dreien sind geringfügig. Bei Ausschaltung des Mantels am groſsen Cylinder 20,1 Proc., bei gleichzeitiger Verkleinerung des Receiver 21,3 Proc. und bei gleichzeitiger Ausschaltung des Receivermantels 22,1 Proc.

Hieraus ist sehr deutlich ersichtlich, daſs es vollkommen richtig ist, wenn Otto H. Müller bei seinen neuesten Woolf'schen Maschinen mit Doppelsteuerung gar keinen eigentlichen Receiver anwendet, sondern nur das wohl verwahrte, aber nicht geheizte Verbindungsrohr vom kleinen zum groſsen Cylinder an dessen Stelle treten läſst, wodurch die Bezeichnung Woolf-Receiver-Maschine unhaltbar wird, wie schon R. Doerfel (1880 238 257) bemerkt hat, und daſs ferner eine möglichst ausgiebige Heizung des groſsen Cylinders für die Oekonomie sehr nothwendig ist. Nach einem von O. H. Müller i. J. 1877 an mich gerichteten Schreiben wird durch den Dampfmantel des groſsen Cylinders die Oberlinie des Diagrammes gehoben und gleichzeitig die Unterlinie gesenkt, so daſs die Diagrammfläche um 15 bis 30 Proc. gröſser ausfällt als ohne Dampfmantel, was begreiflich ist, da die im Cylinder befindliche Wassermenge bei Dampfmantel 15 Procent der Dampfmenge, ohne Dampfmantel aber 35 Procent der Dampf menge beträgt, also die auspuffende Dampfmenge im Verhältniſs 115 : 135, d. i um 12 Proc. vermehrt wird, wenn der Dampfmantel ausgeschaltet ist. Es scheint mir daher gar keinem Zweifel zu unterliegen, daſs der Niederdruckcylinder auch mit directem Kesseldampf geheizt werden soll und daſs es durchaus nicht unrationell ist, wenn der Heizdampf bedeutend höhere Spannung hat als der Dampf im Cylinder; ja ich würde es sogar für sehr zweckmäſsig erachten, den Heizdampf in einem besonderen kleinen Dampfkessel zu erzeugen, der um mehrere Atmosphären höhere Spannung hat als der Arbeitsdampf.

|249|

Der stündliche Verbrauch an trockenem gesättigtem Dampf berechnet sich für 1e indicirt mit 6,35 6,04 6,58 6,92 6,62 6k,18, also im Mittel von a, b und f auf 6k,2, im Mittel von c und e auf 6k,6 und bei d auf 6k,9. Die Ausschaltung des Dampfmantels am groſsen Cylinder allein erhöhte daher den Verbrauch um 6,5 Proc., die gleichzeitige Ausschaltung des Receivermantels steigerte den Mehrverbrauch auf 11 Proc. Bei dem sehr geringen Verbrauch von 6k,2 ist die Heizdampfmenge, welche 11 Procent der ganzen Speisewassermenge beträgt, schon mit einbezogen. Die wirklich in den kleinen Cylinder gelangende Dampfmenge sammt 3 Proc. mitgerissenem Wasser beträgt für einen Hub nur 0k,09, also bei 71,29 Touren in der Minute 770k in der Stunde bei 131,71e indicirt, also nur 5k,846 für 1e ind., die wirkliche Speisewassermenge aber 6k,571 für 1e ind. und der Verbrauch an Kohle 0k,873 bei 7,63facher Verdampfung. Auf die effective Pferdestärke beträgt dies netto 1k Saarkohle mit 6½ Proc. Aschengehalt.

Wir fügen noch einen Vergleich bei, welcher von Interesse sein dürfte. Setzt man die aus dem Diagramm berechnete Dampfmenge bei Beginn der Expansion im kleinen Cylinder 100, so beträgt das Gewicht des vorhandenen Wassers und zwar:

α bei Beginn der Expansion im kleinen Cylinder,

β am Ende des Hubes im kleinen Cylinder,

γ am Ende des Hubes im groſsen Cylinder:

a b c d e f
α) 24,5 22,5 23,9 27,2 25,5 22,9
β) 20,5 19,1 20,0 23,6 20,8 18,9
γ) 16,9 13,5 28,7 32,0 30,3 21,5
Die bei dem Eintritt in den Receiver stattfindende Condensation beträgt:
R = 2,84 2,51 3,06 4,86 3,20 2,68 Procent.

der gleich 100 gesetzten Dampfmenge.

Im Mittel aus a, b, f sind also bei Beginn der Expansion je 100k Dampf mit 23k,3 Wasser gemengt, welche sich bis Ende des Hubes im kleinen Cylinder auf 19k,5 vermindern. Die Condensation an den Wänden des groſsen Cylinders wird durch die Wieder Verdampfung bei der Expansion in Versuch a und b mehr als ausgeglichen, bei f mit dem kleinen Receiver aber schon nicht mehr ganz ersetzt. Bei Versuch c, d und e werden natürlich auch so wie in a, b und f auf je 100k Dampf 4k der nicht ganz gleichen vorhandenen Wassermenge während der Expansion im kleinen Cylinder verdampft; im groſsen Cylinder findet aber wegen Mangels des Dampfhemdes eine Vermehrung der Wassermenge um 9 Proc. statt, welche die Vermehrung der Auspuffwärme nach sich zieht. Daſs trotzdem der Dampfverbrauch bei Versuch d sich nur auf 6k,9, also nur um 0k,7 für 1e ind. oder um 11 Proc. vermehrt, schlieſst nicht aus, daſs der Nutzen eines heiſseren Heizdampfes sich bis 20 Procent erheben kann.

Schröter hat auch die von der Luftpumpe ausgegossene Wassermenge sorgfältig zu messen gesucht. Hierbei scheint aber die Ermittlung des Ausfluſscoefficienten μ unter anderen Umständen als bei den Versuchen vorgenommen worden, oder aber sonst ein Irrthum unterlaufen zu sein, in Folge dessen Schröter auf die Verification von Q verzichtete. Wir erlauben uns die erhobenen Daten dennoch zu benutzen und nur anzunehmen, daſs aus uns unbekannten Gründen der Ausfluſscoefficient durchwegs mit 0,9 zu multipliciren sei.

|250|

Hiermit folgen an Stelle der sehr unwahrscheinlichen Verhältnisse:

= 42,55 41,10 41,35 40,02 39,54 41,03
die weit wahrscheinlicheren:
= 38,20 36,90 37,12 36,02 35,49 36,83
= 3,503 3,262 3,478 3,402 3,291 3,313
53,24 49,41 52,59 52,76 50,38 51,87
2,02 1,90 2,01 2,08 2,05 2,01
9,78 9,88 9,20 8,68 8,74 9,87
0,90 0,87 0,87 0,86 0,86 0,88
––––––––––––––––––––––––––––––––––––––––––––––––––––
Summe 65,94 62,06 64,67 64,38 62,03 64,63.
Hiervon ist das Correcturglied abzuziehen mit:
1,11 2,28 3,01 2,74 2,93 2,11
––––––––––––––––––––––––––––––––––––––––––––––––––––
bleibt Q = 64,83 59,78 61,66 61,64 59,10 62,52
Der durch Messung der Speisewasser- und Heizdampf-Menge gefundene
verläſsliche Werth von Q beträgt:
63,98 62,20 62,30 61,82 61,70 62,86,
somit die Verification von Q:
δ = + 0,85 – 2,42 – 0,64 – 0,18 – 2,60 – 0,34.
Diese Verification ist bei Hallauer's Versuchen in den meisten Fällen wegen
der Wärmeverluste an der Luftpumpe negativ, die obige Zahlenreihe daher
ganz wahrscheinlich. In Procent der Gesammtwärme Q betrüge obige Verification:
+ 1,3 – 3,9 – 1,0 – 0,3 – 4,2 – 5,4 Proc.

Dies wäre ebenfalls eine Controle, wie man sie nicht schöner verlangen kann.

Gustav Schmidt.

Civilingenieur, 1881 Heft 1 und 2.

|245|

Für schnell gehende Maschinen können die von Dreyer, Rosenkranz und Droop vorzüglich ausgeführten Indicatoren (vgl. 1881 239 * 339), welche nach dem Vorschlage des Docenten R. Doerfel mit Aluminiumkolben versehen sind, bestens empfohlen werden.

|246|

Vgl. R. Doerfel: Ueber Woolf'sche Maschinen in den Technischen Blättern, 1880 Heft 3 und 4 und im Maschinenbauer, 1881 Heft 14 und 15.

Suche im Journal   → Hilfe
Alternative Artikelansichten
  • XML
  • Textversion
    Dieser XML-Auszug (TEI P5) stellt die Grundlage für diesen Artikel.
  • BibTeX
Feedback

Art des Feedbacks:
Ihre E-Mail-Adresse:
Anmerkungen: