Titel: Ueber Lichtmessung.
Autor: Anonymus
Fundstelle: 1886, Band 262 (S. 23–30)
URL: http://dingler.culture.hu-berlin.de/article/pj262/ar262011

Ueber Lichtmessung.

Mit Abbildungen.

(Fortsetzung des Berichtes Bd. 257 S. 65.)

Nach A. Crova (Annales de Chimie et de Physique, 1885 Bd. 6 S. 342) ändern sich die aus mit Oel getränktem Papier hergestellten Photometerschirme allmählich. Er empfiehlt statt dessen mit einer dünnen Schicht Stärke überzogene Glasplatten.

Nach Strecker (Elektrotechnische Zeitschrift, 1886 * S. 145) sollen für technische Lichtmessungen nur solche Vorrichtungen benutzt werden, bei denen die Lichtempfindung des Auges allein entscheidet. Hierbei ist keine gröſsere Genauigkeit erforderlich, als sie die Beurtheilung durch das Auge mit Zuziehung einfacher Hilfsmittel gewährt. Denn da der Eindruck auf das Auge der Zweck der Beleuchtung ist, so ist es ganz überflüssig, die Beleuchtung mit einem höheren Grade von Genauigkeit zu messen, als sie das Auge selbst bei Vergleichungen von Lichtempfindungen besitzt. Demnach ist hier die Verwendung der sogen. Selenphotometer, Polarisationsphotometer, Spectrophotometer und ähnlicher ausgeschlossen. Die Messungen sollen lediglich auf den Zweck der Beleuchtung gerichtet sein und dieser hängt unmittelbar zusammen mit dem physiologischen Eindrucke, den unser unbewaffnetes Auge empfängt. Das Gebiet unserer Messungen kann sich also nicht mehr auf solche Eigenschaften der Lichtquellen und Feinheiten der Unterschiede erstrecken, welche das Auge erst mit Hilfe zusammengesetzter optischer Apparate wahrnehmen kann; vielmehr sind ihm seine Grenzen gesteckt durch die Eigenschaften, selbst die Fehler und Mängel des Auges.

Die Vorrichtung von L. Weber (1884 254 * 124) ist wenig geeignet zur Messung von Leuchtstärken, da man wegen der Verschiedenheit der Farbe der vorkommenden Lichtquellen immer wieder gezwungen ist, die Beobachtung der gleichen Deutlichkeit feiner Zeichnungen zu wiederholen; diese ist aber recht ungenau und man kann nur durch sehr häufige Beobachtungen eine einigermaſsen sichere Zahl gewinnen. Dagegen wird man es mit Vortheil benutzen können, wenn man die Güte der erzielten Beleuchtung in einer Anlage prüfen will; hier kommt es ja weniger darauf an, eine sehr groſse Genauigkeit im absoluten Werthe für die Stärke der Beleuchtung zu erreichen, als vielmehr die Vertheilung der Beleuchtung innerhalb eines Raumes zu prüfen, oder die Wirkung bestimmter Hilfsmittel für die Beleuchtung, als Lampenglocken u. dgl.

Bei der Herstellung von Glühlampen wird die Lichtmessung geradezu Fabrikationszweig, da es bekanntlich erforderlich ist, die Lampen zu sondern nach der Spannung, bei welcher sie die ihrer Oberfläche entsprechende Leuchtkraft besitzen, damit alle Lampen, welche in einer Anlage brennen, mit demselben Glänze, derselben Farbe leuchten und damit sie gleiche Lebensdauer besitzen.

|24|

Um die bei den bisherigen Verfahren auftretenden Schwierigkeiten zu umgehen, empfiehlt Strecker folgendes Verfahren:

Die zum Zwischengliede bestimmte Glühlampe E habe bei 100 Volt die Leuchtkraft 16 Kerzen und die Stromstärke 0,75 Ampère. Eine andere Glühlampe, z.B. eine solche, welche als 16-Kerzenlampe hergestellt wurde, soll in denselben Einheiten wie E gemessen werden. Man schaltet die beiden Glühlampen parallel in eine Leitung, zwischen deren Klemmen A und B jedenfalls eine mehr als ausreichende Spannung herrscht, so daſs man, um die beiden Lampen auf 16 Kerzen zu bringen, in jeden Zweig der Leitung einen Regulator R bezieh. W bringen muſs.

Textabbildung Bd. 262, S. 24
Die Widerstände zwischen A und den Glühlampen seien gering und nahezu gleich, so daſs man ihre Unterschiede vernachlässigen kann. Jeder Zweig der Leitung enthält noch eine Hälfte eines Differentialgalvanometers G (in Abzweigung) und dieses Galvanometer schaltet man am passendsten an die Stelle ein, wo sich die Leitungen wieder in B vereinigen, wie in der Figur gezeichnet. Beide Lampen befinden sich auf dem Photometer.

Handelt es sich um Messungen zwischen den Lampen E und L, so wird die Lampe E auf eine nahe bei 100 Volt gelegene Spannung gebracht, die Lampe L in die für die Messung gewünschten Verhältnisse versetzt und das Photometer eingestellt. Verbindet man die Punkte p1 und p2 durch eine Leitung von groſsem Widerstände ω, welche ein Galvanometer zur Messung der Stromstärke i enthält, so gibt das Product ωi den Unterschied der Spannungen der beiden Glühlampen. Zugleich liest man an dem Ausschlage des Differentialgalvanometers das Mehr oder Weniger der Stromstärke ab und miſst am Photometer das Verhältniſs der Leuchtstärken. Es sei gefunden für L:

Spannungsunterschied + 2,5 Volt,
Stromunterschied – 0,55 Ampère,
Verhältniſs der Leuchtstärken 1 : 1,

so lautet die daraus abgeleitete Bestimmung für L in absolutem Maſse: 102,5 Volt, 0,695 Ampère, 16 Kerzen.

Um die Zulässigkeit des Verfahrens im vorliegenden Falle zu prüfen, ändert man die Spannung, welche zwischen A und B herrscht, um einige Volt und beobachtet, ob die Aenderung einen Einfluſs auf die Messung hat. Dies gibt unmittelbar Aufschluſs darüber, mit welcher Genauigkeit E auf diejenige Spannung, für welche die ursprüngliche Messung galt (100 Volt), gebracht werden muſs. Strecker hat beobachtet, daſs eine Aenderung bis 6 Volt keinen merklichen Unterschied in den Messungsergebnissen hervorbrachte.

Handelt es sich um etwas gröſsere Unterschiede von E und L, so muſs man statt der Unterschiede von Strom und Spannung die Verhältnisse derselben bestimmen. Dies kann leicht geschehen mit Hilfe von Differentialgalvanometern, indem man in die Zweige derselben so viel Widerstand einschaltet, daſs die Nadel keinen Ausschlag zeigt. Dieses Verfahren ist etwas umständlicher als das vorhin angegebene, es ist aber das genauere.

Es ist nicht erforderlich, die Zwischenlampe E, deren Leuchtkraft bei einer bestimmten Spannung bekannt ist, genau auf diese Spannung zu bringen. Es werde z.B. die Lampe E von 16 Kerzen bei 100 Volt benutzt, um die Spannung zu bestimmen, bei welcher eine andere Lampe L ebenfalls 16 Kerzen hat. E besitze aber bei der Messung zufällig nur 97 Volt; dann wird E nicht mit 16 Kerzen, sondern vielleicht mit 13 Kerzen brennen, die zu messende Lampe wird auch nur auf 13 Kerzen gebracht werden müssen, um die Einstellung am Photometer richtig zu machen. Es wird also bestimmt, wie viel an Spannung L mehr bezieh. weniger braucht als E, um 13 Kerzen zu geben. Ist dieser Unterschied als + 2,5 Volt gefunden, so brennt die Lampe L bei |25| 99,5 Volt mit 13 Kerzen. Zu Folge der gemachten Voraussetzung brauchen nun L und E gleichen Zuwachs an Spannung, um von 13 auf 16 Kerzen gebracht zu werden; war dies bei E 3 Volt, so ist es bei L (99,5 : 97) × 3 = 3,077; mit einer kleinen Vernachlässigung darf man dafür auch 3 Volt setzen, wie bei E. Also hat L bei 102,5 Volt 16 Kerzen, was bei der eben angeführten Messung auf 0,08 Volt richtig gemessen wäre. Da die Leuchtkraft und die Spannung, welche die Vergleichslampe während dieser Messung hatte, aus der Rechnung wegfallen, braucht man sie nicht mehr zu bestimmen, sondern nur eine dieser beiden Gröſsen oberflächlich zu vergleichen.

Ist die Lampe E bestimmt, so genügen für die Lichtmessungen elektrische Meſsinstrumente von sehr mäſsiger Empfindlichkeit. Handelt es sich z.B. um das Messen von 16 kerzigen Glühlampen zwischen 80 und 120 Volt mit einer Genauigkeit von 1 Volt, eine Aufgabe, welche sich in Glühlampenfabriken fortwährend wiederholt, so genügt ein Spannungszeiger, der auf etwa 5 Proc. genau miſst; denn da nur die Unterschiede gegen 100 Volt zu bestimmen sind, beträgt der gröſste Fehler, welcher vorkommen kann, 5 Hundertstel von 20, d. i. 1 Volt. Ebenso verhält es sich mit der Strommessung.

Es empfiehlt sich neben einer Hauptvergleichslampe eine Anzahl von Gebrauchslampen zu halten, welche zu den gewöhnlichen Messungen dienen, während die Hauptlampe nur dazu benutzt wird, die übrigen zeitweilig zu vergleichen und etwaige Aenderungen festzustellen.

F. v. Hefner-Alteneck (Journal für Gasbeleuchtung, 1886 S. 3) bezweifelt, daſs als Lichteinheit die von Violle aufgestellte Platineinheit allgemein angenommen wird (vgl. 1884 254 499). Die Gleichmäſsigkeit der vom geschmolzenen Platin ausgestrahlten Lichtmenge ist noch nicht erwiesen. Wie z.B. das Wasser weit unter seinen Gefrierpunkt abgekühlt werden kann, ohne zu erstarren, so könnte dies auch für flüssiges Platin der Fall sein. Welchen Einfluſs die Verunreinigungen des Platins auf den Erstarrungspunkt haben, ist noch festzustellen. Aber selbst dann, wenn diese Fehlerquellen beseitigt würden, so könnte das Platinlicht doch nicht an Stelle der anderen Einheiten in die praktische Lichtmessung eintreten, weil es bei wirklichen Messungen nicht thatsächlich benutzt werden kann. Hierbei kann man nicht seinen Maſsstab bei sich führen; man muſs vielmehr denselben, d.h. hier die Lichteinheit, bei jeder Messung erst wieder neu erzeugen. Allein die möglichst genaue Kenntniſs, wie das bei der ursprünglichen Messung geschehen ist und wie man es wieder machen muſs, um die gleiche Lichtstärke zu erzeugen oder mit anderen zu vergleichen, ist nothwendig. Ob die zur Messung wirklich benutzt gewesene Lichtquelle in einer mehr oder weniger bestimmten Beziehung zu einer anderen nicht zu gleicher Zeit und am gleichen Orte hergestellten Lichtquelle steht, kann uns ganz gleichgültig sein. Es folgt daraus, daſs nur eine Lichteinheit, welche sich auf eine bestimmte Vorschrift hin im unmittelbaren Anschlüsse an jede Lichtmessung herstellen läſst, als internationale Lichteinheit empfohlen werden darf.

|26|

Bei dem Violle'schen Verfahren ist dies aber bekanntlich nicht der Fall, weil es viel zu kostbar und umständlich ist. Es wurde nun der Vorschlag gemacht, es sollten die Beziehungen der älteren Lichteinheiten, des Carcelbrenners, der Normalkerze, wohl auch der Amylacetatlampe (vgl. 1884 252 * 474) zur Violle'schen Einheit möglichst genau festgestellt und dann den Fachleuten empfohlen werden, die mit der einen oder anderen Einheit gemessenen Werthe in Violle'schen auszudrücken. Dies wird aber ebenso wenig gelingen, als es bisher trotz emsigster Bemühungen gelungen ist, die Verhältnisse der alten Lichteinheiten zu einander aufzustellen. Das Verhältniſs der Violle'schen Einheit zu einer anderen bleibt immer um die Fehlergrenzen beider Einheiten unsicher. Erfährt man also eine Lichtstärke in Violle'schen Einheiten, so muſs man sich erst noch erkundigen, nicht nur mit einer wie definirten Einheit wurde gemessen, sondern auch noch, welches Verhältniſs derselben zur Violle'schen Einheit hat der Messende in Rechnung gebracht? Beide Werthe enthalten unvermeidliche, sich addirende Unsicherheiten und man fragt billig, wozu dieser Umweg? Da sucht man doch lieber von vornherein unter den möglichst leicht herstellbaren Einheiten die beste heraus und einigt sich über ihre Anwendung und, wenn sie noch Fehler hat, so müssen dieselben eben als unabänderlich mit in den Kauf genommen werden, denn sie kommen in der einen oder anderen Form doch wieder zum Vorscheine.

Bei der Amylacetatlampe ist zwar die Flamme leicht beweglich, die richtige Flammenhöhe ist aber viel leichter und sicherer zu erzielen als bei der Kerzenflamme, so daſs man viele Messungen durch unmittelbaren Vergleich ausführen kann.

Der Einfluſs verdorbener Zimmerluft auf die Leuchtkraft des Lämpchens ist sehr beträchtlich. Derselbe ist allerdings niemals zu merken, wenn man das Lämpchen gegen die Normalkerze oder eine andere Flamme vergleicht; denn diese unterliegen dem Einflüsse von Kohlensäuregehalt in der Luft in gleichem Grade. Derselbe wurde im Siemens und Halske'schen Laboratorium durch Vergleich mit Glühlampen festgestellt, so daſs sich eine fleiſsige Lüftung des Meſszimmers empfiehlt. Durch wiederholte Vergleiche mit Glühlampen hat sich zwar ergeben, daſs die gröſsten Barometerschwankungen an einem Orte keinen bemerkbaren Einfluſs ausüben und daſs wohl auch die Höhenunterschiede, in denen voraussichtlich Lichtmessungen im Allgemeinen stattfinden, in dieser Beziehung ohne Belang sein werden. Da aber Versuche von Frankland vorliegen, welche das schwächere Brennen von Kerzen auf hohen Bergen ergeben haben, so müſste dieser Punkt durch Vergleich der Normallampe an Orten von verschiedener Höhenlage mit den gleichen durch genau gleiche Stromstärke betriebenen Glühlampen erst noch festgestellt werden. Sollte sich ein merklicher Unterschied ergeben, so müſste eben die Flamme etwa bei 760mm Barometerstand für die Normale |27| erklärt und die Abweichungen für ganz genaue Messungen rechnerisch in Betracht gezogen werden. Jedenfalls unterliegen auch hier alle durch Verbrennung erzeugten Lichter dem gleichen Einflüsse und nur die elektrischen Glühlichter jedenfalls nicht.

Die Leuchtkraft des Lämpchens stimmt mit der Walrathkerze überein, bei 43mm Flammenhöhe der englischen Kerze, wobei die Flamme von dem Punkte, wo der Docht sich zu schwärzen beginnt, bis zur Spitze gemessen war.

J. Wybauw1) empfiehlt als Einheit für die Beleuchtung den zehnten Theil der Helligkeit eines Carcelbrenners in 1m Entfernung. Er bezeichnet diese Einheit mit „lux“. Da dieselbe fast genau mit der von L. Weber (1885 257 * 68) vorgeschlagenen „Meterkerze“ übereinstimmt, so ist letztere Einheit vorzuziehen.

Wird ein Flächenelement m der wagerechten Ebene durch eine Lichtquelle beleuchtet, deren Stärke = J, während ihre Höhe über der Ebene = h, die Entfernung des Fuſspunktes von dem Punkte m gleich x, so ist die Stärke der Beleuchtung des Punktes m:

oder

nach L. Weber (1885 257 69). Der Werth B ist = 0 für a = 0 und für a = 90°, d.h. für h = 0 und für h = ∞. Zwischen diesen beiden Werthen gibt es einen Höchstwerth, welcher sich durch Differentiation nach der Gröſse a (x = Const) ergibt. Aus folgt cos a = √⅔, a = 35° 16' und h = x tg a = 0,707 x. Macht man die Höhe h der Lichtquelle L also = 0,707 der Entfernung des Punktes m vom Fuſspunkte der Lichtquelle, so erhält m die stärkstmögliche Beleuchtung.

Es soll nun die gesammte Beleuchtung einer wagerechten Ebene berechnet werden. Es sei zuerst ein Ring betrachtet, dessen Mittelpunkt im Fuſspunkte der Lichtquelle liegt und welcher zwischen zwei Kreisen mit den Radien x und x + dx eingeschlossen ist. Die Oberfläche dieses Ringes ist, wenn man (dx)2 vernachlässigt, 2 πxdx und die Stärke der Beleuchtung:

.

Die Beleuchtung eines vollen Kreises vom Radius x wird danach sein:

.

Für wird und die Integration ergibt:

.

Dies ist die gesammte Lichtmenge, welche ein wagerechter Kreis vom Radius x empfängt von einer Lichtquelle, deren Stärke = J und welche sich in der Höhe h senkrecht über dem Mittelpunkte des Kreises befindet. Aus Betrachtung dieser Gleichung ergibt sich zuerst, daſs für wird; h verschwindet aus der Formel und man sieht, daſs die Gesammtbeleuchtung einer unendlich groſsen Ebene einfach proportional der Lichtquelle und unabhängig von der Höhe der Lichtquelle über der Ebene ist. Die Hälfte der Gesammtbeleuchtung der unendlichen Ebene, also πJ, entsteht, wenn ist; sie fällt auf die Basis eines Kegels, dessen Seite 30° gegen die Wagerechte geneigt ist. Für , also für den Lichtkegel von 90°, wird .

|28|

Die gröſste Wirkung der Beleuchtung in der Entfernung vom Fuſspunkte der Lichtquelle, nach Wybauw die vollständige Nutzwirkung derselben, wird gröſser sein als die gesammte Lichtmenge, welche eine wagerechte Ebene empfängt. Man erhält sie, wenn man setzt:

.

Diese zweite Gleichung ergibt die vollständige Nutzwirkung einer Beleuchtung in allen Punkten einer materiellen Ebene.

Einige besondere Werthe von B' sind noch die folgenden:

Für x = 0,6124 h wird B' = J,
x = h = 2,177 J,
x = h√3 = 4,354 J,
x = 1,3115 h = πJ

die äuſsersten Strahlen treffen im letzten Falle die Ebene unter dem Winkel 52° 40', während bei (erste Gleichung) dieser Winkel = 60° ist.

Die zweite Gleichung (für B') wird stets in der Praxis anzuwenden sein, wenn man die Wirkungen mehrerer Beleuchtungsanlagen mit einander vergleichen will. Zu diesem Zwecke wird die Anzahl Meterkerzen bestimmt, welche auf jedes Element der zu beleuchtenden Fläche fallen, jedoch, wie bereits Crompton (1880) vorschlug, diese Fläche stets normal zu den darauf fallenden Lichtstrahlen gedacht; die Summe des Inhaltes dieser Elemente, multiplicirt mit den betreffenden Beleuchtungsstärken, würde die Gesammtleistung für die betrachtete Fläche sein. Die zweite Gleichung gibt nun für B' die Summe dieser Nutzwirkungen für eine Kreisfläche vom Radius x, wenn senkrecht über dem Mittelpunkte in einer Höhe h sich eine Lichtquelle von der Helligkeit J befindet.

Textabbildung Bd. 262, S. 28
Den Ausdruck für B' nennt Wybauw das Beleuchtungsvolumen. Die Formel stellt folgendes Volumen dar: Macht man und , so bilden die Punkte M für alle Werthe von x eine Curve von der Form AMB. Befindet sich in dem Punkte K der Horizontalebene das zwischen den Kreisumfängen von den Radien x und gelegene Element dxds, so ist das Volumen des Prisma, dessen Basis dxds und dessen Höhe KM ist, und das Volumen des Cylinders, welcher den ganzen Ring zur Basis hat, ; endlich ist das Integral Volumen des Revolutionskörpers (um die Ordinatenachse OA), welcher eingeschlossen wird von der Oberfläche AMKO.

Die Gröſse des in Betracht kommenden Unterschiedes in der Stärke der Beleuchtung hängt von der Höhe h der Lichtquelle über der zu beleuchtenden Fläche ab. Diese Hohe ist besonders von Wichtigkeit für die starken elektrischen Bogenlichter, bei welchen die Helligkeit am Fuſse der Stangen oder Masten, welche sie tragen, stets bei weitem die zu machenden Ansprüche übertrifft, so daſs man sein Augenmerk nur auf die Stärke der Beleuchtung in einiger Entfernung zu richten hat. Ein Bogenlicht von 1000 Kerzen Helligkeit liefert bei einer Höhe von 8m an seinem Fuſse eine Stärke der Beleuchtung von 15,6 Meterkerzen, in 30m Entfernung von diesem Fuſspunkte eine solche von 1,04 Meterkerzen. Bei 16m Höhe ist die Beleuchtung an diesen beiden Punkten 3,6 und 0,9 Meterkerzen stark. Während also in 30m Entfernung die Stärke der Beleuchtung sich in kaum wahrnehmbarer Weise ändert, ist sie auf der ganzen beleuchteten Fläche bedeutend gleichmäſsiger geworden bei Erhöhung der Lampe von 8 auf 16m. Auſserdem ist die Möglichkeit des Blendens dadurch bedeutend verringert. Es ist also bei 8m Höhe der Lampe in der |29| Nähe derselben ein unnützer Ueberfluſs an Helligkeit vorhanden, welcher der Gleichmäßigkeit der Beleuchtungschadet.

Dieser Ueberfluß der Beleuchtung in der Nähe der Lichtquellen ist ein Umstand, welchen man beim Vergleiche zweier Beleuchtungsanlagen nicht aus dem Auge lassen sollte. Die Gleichung für B' gibt die ganze Nutzwirkung einschlieſslich obigen Ueberflusses und es fragt sich, ob es nicht besser sein dürfte, in die Rechnung aus obigem Grunde eine Berichtigung einzuführen. Zu diesem Zwecke müſste man zuerst festsetzen, über welche Beleuchtungsstärke hinaus eine Beleuchtung als überflüssig zu bezeichnen ist.

Setzt man diese Grenze = n Meterkerzen, so erhält man den Radius x des Kreises, welcher die überflüssige Beleuchtung einschlieſst, aus der Gleichung: , woraus wird. Nach der Gleichung für B' ist die ganze Beleuchtung im Inneren dieses Kreises, wenn man für x vorstehenden Werth setzt: . Hiervon muſs abgezogen werden die Beleuchtung von n Meterkerzen der Oberfläche des Kreises , nämlich , so daſs die Gröſse der überflüssigen Beleuchtung wird:

.

Subtrahirt man U von B', so erhält man:

B''
Oder

Gibt man n einen bestimmten Werth, also für öffentliche Beleuchtung nach Wybanw's Vorschlag etwa den Werth 10 (Meterkerzen), so ergibt diese Gleichung für B'' die wirklich nützliche Beleuchtungswirkung in des Wortes wahrster Bedeutung.

Ist der Radius x eines zu beleuchtenden Kreises gegeben, so erhält man die Höhe h, für welche diese Nutz Wirkung ein Höchstwerth ist, aus der Gleichung:

und .

Im Freien wird bei gleicher Lichtmenge und gleicher Höhe der Lichtquellen die gröſste Gleichförmigkeit einer Beleuchtung durch eine möglichst groſse Anzahl von Lichtquellen erreicht, also nicht etwa durch einzelne Bogenlampen. Lichtquellen von 2000 Kerzen, in Entfernungen von 100m von einander aufgestellt, geben z.B. als geringste Beleuchtung Meterkerzen, als gröſste Beleuchtung Meterkerzen. Verwendet man statt dessen Lampen von 500 Kerzen, 50m von einander entfernt, so ergeben sich in entsprechender Weise 1,38 bezieh. 5 Meterkerzen, d.h. letztere Beleuchtung ist gleichmäſsiger und gewiſs billiger.

Bei Beleuchtung eines Platzes stellt man die Lampen so, daſs sie an den Ecken von gleichschenkligen Dreiecken zu stehen kommen. Bei der Entfernung a der Lichtquelle ist dann die geringste Beleuchtung . Stehen z.B. Lampen von 800 Kerzen 8m über dem Boden und 54m von einander entfernt, so ist die geringste und gröſste Beleuchtung 0,94 bezieh. 12,5 Meterkerzen.

Stellt man nun die Beleuchtung desselben Platzes mit 3 mal so starken Lichtquellen in ⅓ so groſser Anzahl her, so werden die Seiten der neuen gleichseitigen Dreiecke sein müssen und es wird dem zu Folge die geringste Beleuchtung . Diese Beleuchtung ist augenscheinlich stärker als im ersten Falle. Für obiges Beispiel wird die geringste Beleuchtung = 1,12, die gröſste = 37,5 Meterkerzen.

Soll die Mindestbeleuchtung nicht gröſser werden, sondern dieselbe bleiben wie im ersten Falle, so muſs sein:

|30|

oder ,

also bei und wird , d.h. um das Mindeste der Beleuchtung des Platzes mit nur ⅓ der Lichtquellen herzustellen, genügt es, jeder dieser Lichtquellen eine 2,5 mal so groſse Helligkeit zugeben. Die Vertheilung des Lichtes ist in diesem Falle allerdings eine andere geworden; während die Mindestwerthe dieselben blieben, ist die Summe der Beleuchtung vergröſsert worden.

Will man, bei gleich groſser erzeugter Lichtmenge, in beiden Fällen dieselbe Gleichförmigkeit der Beleuchtung, so muſs man im zweiten Falle die Höhe der Lichtquellen vergröſsern, nämlich auf h√3. Dann wird wieder die geringste und gröſste Beleuchtung = 0,94 bezieh. 12,5 Meterkerzen wie im ersten Falle. Die 3 mal so starken Lichtquellen ergeben dieselben Beleuchtungsgrenzen, aber die Vertheilung der Beleuchtung ist trotzdem eine gleichförmigere, da die Anzahl der Lichtquellen eine geringere ist und in Folge dessen die Orte, welche die stärkste Beleuchtung erhalten, weiter aus einander liegen; die Beleuchtungscurven sind flacher.

Besser als durch die Rechnung wird man sich mit leichter Mühe durch Zeichnung der Curven der Nutzwirkung einer Beleuchtung ein klares Bild von der Vertheilung des Lichtes herstellen.

|27|

Bulletin de la Société belge d'Électriciens, 1885 Bd. 2 Nr. 4, vgl. Journal für Gasbeleuchtung, 1886 * S. 66.

Suche im Journal   → Hilfe
Alternative Artikelansichten
  • XML
  • Textversion
    Dieser XML-Auszug (TEI P5) stellt die Grundlage für diesen Artikel.
  • BibTeX
Feedback

Art des Feedbacks:
Ihre E-Mail-Adresse:
Anmerkungen: