Titel: Ellipsograph nach Bion, combinirt mit Stangenzirkel, construirt von Riefler.
Autor: Anonymus
Fundstelle: 1895, Band 296 (S. 110–112)
URL: http://dingler.culture.hu-berlin.de/article/pj296/ar296026

Ellipsograph nach Bion, combinirt mit Stangenzirkel; construirt von Clemens Riefler.

(D. R. P. Nr. 80177.)

Mit Abbildungen.

Markirt man auf einer Geraden drei beliebige Punkte a, b und c und lässt man b und c auf den – über den Scheitel hinaus verlängerten – Schenkeln eines beliebigen Winkels gleiten, so beschreibt der Punkt a bekanntlich eine Ellipse, deren conjugirte Halbachsen ab und ac sind; die zwischen den Schenkeln gleitende Strecke bc ist sonach die Differenz der Halbachsen.

Nimmt man statt des beliebigen Winkels einen solchen von 90°, so gehen ab und ac in die halben Hauptachsen der Ellipse über.

In unserer Fig. 1 ist die Gerade AB als Papierstreifen (Lineal) gedacht, welcher mit der constanten Strecke αj auf den gegebenen conjugirten Achsen aa1 und bb1 gleitet; eine Schar von Lagen der verlängerten Strecke αj versinnlicht das Auffinden der einzelnen Ellipsenpunkte, die der in β markirte Punkt der Reihe nach ergibt. Auch ist in dieser Figur das Auffinden der Hauptachsen ersichtlich gemacht: ma; βj = nj; ∢ nmβ halbirt, ergibt die Richtung der grossen und, senkrecht hierzu, der kleinen Hauptachse; der Kreisbogen mit dem Radius bis zum Schnitte o und o1 der verlängerten mn ergibt no als die Länge der grossen = a1a und no1 als die Länge der kleinen Hauptachse = vw.

Von den oben genannten beiden Sätzen ist der zweite – |111| der specielle Fall – schon seit Anfang des vorigen Jahrhunderts eine immer wiederkehrende Anregung für die Constructeure gewesen, sogen. Ellipsenzirkel – oder um den in diesem Namen liegenden Widerspruch zu vermeiden – Ellipsographen zu erfinden, um so mehr, als die Ellipse sowohl im Ingenieurfache, als auch in der Architektur nicht nur als die schräge Projection des Kreises, sondern auch als selbständige Curve vielfach auftritt, und weil ein solcher Ellipsograph auch ganz hervorragenden Werth nicht nur allein für den Unterricht im technischen Zeichnen, sondern auch in jenem der Mathematik besitzt.

Textabbildung Bd. 296, S. 111

Da man zudem aus gegebenen conjugirten Durchmessern einer Ellipse – wie wir vorhin absichtlich in kurzer Notiz gezeigt haben, da solche rein geometrischen Constructionen oft schnell vergessen werden – leicht deren Hauptachsen bestimmen kann, so ist der Ellipsograph auch für diesen Fall sehr bequem gebrauchbar. Um nur eines Beispieles zu gedenken: Ist ein einfaches Kreuzgewölbe über quadratischem Grunde anisometrisch zu zeichnen, so ergeben sich die Ellipsen der Stirnseiten sowohl, als auch jene der zwei Gratbögen durch conjugirte Achsen; davon haben je ein Paar Ellipsen der Stirnseiten dieselben Achsen, die zwei Grate nur die senkrechte Achse gemeinsam; diese 6 bezieh. also 8 Ellipsen, ohne Ellipsograph gezeichnet, erfordern verhältnissmässig viel Zeit.

Unter den auf dem erwähnten Princip beruhenden Constructionen tritt zuerst im J. 1723 der bekannte sogen. Kreuzzirkel von Bion auf (schon 1717 in Bion's Werkschule, deutsch von Doppelmayer, Nürnberg, abgebildet), bei welchem die Ellipse in der Weise erzeugt wird, dass zwei Punkte einer Stange, welche auch den der Länge nach verschiebbaren beschreibenden Stift trägt, in – meist rechtwinklig – sich kreuzenden Geraden geführt werden. Das Führungskreuz ist aus Holz oder Messing gefertigt und unterhalb mit kleinen scharfspitzigen Stiften versehen, mit welchen es in das Zeichenpapier eingedrückt wird; in den beiden Führungen gleiten kurze Pfannen, welche durch Zapfen mit zwei Schiebern verbunden sind, die auf der Stange festgeklemmt werden. Diese Grundconstruction ergibt sich aber aus dem Problem der Cardani'schen Kreise, indem daraus zu folgern ist:

1) Zwei Punkte einer Ebene bewegen sich auf den Schenkeln eines Winkels, dessen Ebene mit jener zusammenfällt; irgend ein dritter Punkt der bewegten Ebene beschreibt eine Ellipse;

2) zwei Punkte einer Ebene bewegen sich, der eine auf einem Kreise, dessen Ebene mit der bewegten zusammenfällt und dessen Radius gleich dem Abstande der beiden bewegten Punkte, der andere auf einem Durchmesser dieses Kreises; irgend ein dritter Punkt der bewegten Ebene beschreibt eine Ellipse, und

3) ein Kreis rollt in einem doppelt so grossen; irgend ein Punkt der Ebene des ersteren beschreibt eine Ellipse.1)

Die Zusammengehörigkeit dieser drei Fälle wurde bereits 1820 von Jopling erkannt, welcher dieselben auch in ähnlicher Weise zusammenstellte.2)

Von allen drei Arten finden sich Beispiele und nicht etwa nur je einzelne, sondern jedes in einer ganzen Reihe von constructiven Durchführungen. – Wir haben in Riefler's Institut wunderbare Constructionen von Ellipsographen gesehen, Vorgänger des hier zu beschreibenden Instrumentes, mit denen man prächtig exacte Curven zeichnen kann, welche Instrumente aber, um in die Praxis eingeführt werden zu können, zu complicirt gebaut und daher auch zu kostspielig sind.

Textabbildung Bd. 296, S. 111

Der hier unter Ziffer 1 angeführte, schon an die Spitze dieses Aufsatzes gestellte Fall, bezieh. dessen dort aufgeführte specielle Form des rechten Winkels, hat durch Clemens Riefler, Fabrik mathematischer Instrumente in Nesselwang und München, eine Construction gefunden, die wir nunmehr einer näheren Besprechung unterziehen wollen.

Das Instrument, in Fig. 2 im Maasstabe von 1 : 4 dargestellt, gibt Ellipsen, deren Hauptachsenlängen zwischen den Grenzen 10 und 560 mm liegen. Wir führen absichtlich gleich hier an, dass wir mit dem Instrumente zunächst einen Kreis von 560 mm Durchmesser, dann eine Schar von Ellipsen, alle von der grossen Achse 560 und von den kleinen Halbachsen 280 abwärts bis 200, von da eine Schar von der grossen Halbachse 200 abwärts bis zur kleinen Halbachse 100 u.s.w. gezeichnet haben; die kleinste Ellipse, mit den Halbachsen 12,5 und 10 mm, haben wir mit der aus Fig. 2 ersichtlichen gekrümmten Reissfeder beschrieben.

|112|

Das Instrument besteht aus zwei, der bequemeren Unterbringung im Etui wegen, aus einander schraubbaren Führungsschienen a und b, welche zusammen ein bilden und je eine Längsnuth haben, in welcher zwei mit den senkrecht stehenden Achsen ii1 versehene Schieber leicht und sicher hin und her gleiten. Die Achsen ii1 bilden zugleich die Drehachsen der in dieselben eingesteckten Klemmen kk1 durch welche die mit Millimetereintheilung versehene Stange ll hindurchgeht, welche am vorderen Ende den Zeichenstift (Bleistift oder Reissfedereinsatz, für sehr kleine Curven gekrümmte Reissfeder) z trägt. Der letztere ruht durch Federdruck auf der Zeichenfläche, die stets vollkommen eben sein muss, auf und kann zum Zwecke der Umdrehung des Instrumentes durch eine kleine Drehung des Schraubenkopfes m so weit in die Höhe gehoben werden, dass derselbe ausser Berührung mit der Zeichenfläche kommt.

Textabbildung Bd. 296, S. 112

Der Gebrauch des Instrumentes ist folgender: Nachdem zunächst die beiden Schienen a und b durch die zu diesem Zwecke vorhandene Schraube, welche, weil unten angebracht, aus der Figur nicht ersichtlich ist, fest mit einander verbunden worden sind, setzt man die nahe der Vorderkante der Schiene b angebrachte Nadelspitze n in den Mittelpunkt der zu zeichnenden Ellipse ein, dreht das Instrument so lange, bis der auf dem Fusse p angebrachte Indexstrich mit einer der Ellipsenachsen zur Deckung kommt, und dreht alsdann die Schraube s so weit herab, bis die Nadelspitze, in welche sie endigt, in den Zeichentisch eingedrungen ist. Das Instrument ist jetzt orientirt und gegen jegliche Verschiebung gesichert. Man stellt nunmehr den Indexstrich der Klemme k an dem Maasstabe der Stange ll auf die halbe Länge der kleinen Ellipsenachse und jenen der Klemme k1 auf die halbe Länge der grossen Ellipsenachse ein – die letztere Länge ist jedoch um 20 mm grösser abzulesen, als sie wirklich ist, weil die Achse dieser Klemme aus leicht erkennbaren Constructionsgründen (siehe diese Achse A in Fig. 3) um diesen Betrag näher am Zeichenstifte liegt – und setzt nun die Stange ll auf den ein bildenden unteren Theil des Instrumentes, indem man den Achsenzapfen der Klemme k in die federnde cylindrische Oeffnung des unteren Schiebers bei i und gleichzeitig den Zapfen des oberen Schiebers in die cylindrische Oeffnung der Klemme k1 bei i1 hineinsteckt. Zuletzt lässt man den Zeichenstift durch entsprechende Drehung der Schraubenmutter m herab bis zur Berührung mit der Zeichenfläche, worauf die eine Hälfte der Ellipse gezeichnet werden kann. Um die andere Hälfte der Curve zu zeichnen, braucht man das Instrument nicht abzuheben und umzulegen, sondern man bringt nur den Zeichenstift wieder etwas in die Höhe, dreht die Schraube s so weit herauf, bis die Nadelspitze derselben frei schwebt, und dreht das Instrument um die Mittelpunktspitze n im Kreise um 180°, also bis der Indexstrich des Fusses p in die andere Hälfte der Ellipsenachse zu liegen kommt. Dreht man nun die Schraube s und den Zeichenstift wieder herab, so kann die zweite Ellipsenhälfte gezeichnet werden.

Mittels dieses Instrumentes erhält man sehr exacte Curven und bei einiger Uebung gelingt es, dieselben sowohl in Bleistift als auch gleich in Tusche sehr schön zu zeichnen. Die Anschlusstellen der beiden getrennt gezeichneten Ellipsenhälften decken sich vollkommen genau. Ausserdem gewährt das Instrument einen so weiten Spielraum in der Grösse und Excentricität der Ellipsen, welche damit gezeichnet werden können – siehe unsere obigen Angaben –, wie nicht leicht eine andere Construction dieser Art. Da die Achsen i und i1 (Fig. 3) über einander gelagert sind, so können die Klemmen k und k1 so nahe zusammengeschoben werden, bis diese Achsen in eine einzige zusammenfallen. In Fig. 3 liegen i und i1 in einer Verticalen. Man kann daher nicht nur Ellipsen, welche sich der Kreisform nähern, sondern sogar vollkommene Kreise mit dem Instrumente zeichnen, ebenso aber auch Ellipsen von ziemlich langgestreckter Form. Wir waren bei Zeichnung der letzteren überrascht, wie auch hier der genaue Anschluss der Hälften erfolgte.

Fig. 3 zeigt den Ellipsographen ohne die Führungsschienen a und b, in welcher Adjustirung derselbe als Mess- und Stangenzirkel gebraucht werden kann. Der Spitzeneinsatz n bezieh. der Nadeleinsatz n1 wird in die Klemme k1 eingesetzt, die andere Klemme k kommt hierbei nicht in Verwendung.

Der Preis des Instrumentes ist zwar noch etwas hoch, nämlich 50 M., bei grossem Absatz, der unzweifelhaft erfolgen wird, dürfte sich der Preis jedoch in Bälde niedriger stellen. Wir können das sehr exact gearbeitete Instrument Jedermann auf das beste empfehlen.

München, im März 1895.

Ernst Fischer.

|111|

T. Rittershaus: Ueber Ellipsographen, Verhandlungen des Vereins zur Förderung des Gewerbfleisses in Preussen, 1874 S. 269 ff., Taf. V und VI.

Dr. A. Slaby: Ein Beitrag zur Kenntniss der Ellipsographen, ibid., 1876 S. 827 ff.

|111|

Mechanic's Magazine, 1820 S. 216.

Suche im Journal   → Hilfe
Alternative Artikelansichten
  • XML
  • Textversion
    Dieser XML-Auszug (TEI P5) stellt die Grundlage für diesen Artikel.
  • BibTeX
Feedback

Art des Feedbacks:
Ihre E-Mail-Adresse:
Anmerkungen: