Titel: [Versuch zu einer Erklärung der Erscheinungen des unvollkommenen Kontaktes.]
Autor: Anonymus
Fundstelle: 1903, Band 318 (S. 193–194)
URL: http://dingler.culture.hu-berlin.de/article/pj318/ar318051

Versuch zu einer Erklärung der Erscheinungen des unvollkommenen Kontaktes.

Von Dr. A. Koepsel.

Die sonderbaren Erscheinungen, welche der unvollkommene Kontakt zeigt, die hauptsächlich in letzter Zeit seit der Verwendung desselben in der drahtlosen Telegraphie zu Tage getreten sind, haben bisher den Gelehrten und den Technikern viel Kopfzerbrechen verursacht und haben eine Reihe von Erklärungen gezeitigt, von denen aber bis jetzt keine die sämtlichen Erscheinungen zu deuten vermag.

Als die einfachste und ungezwungenste Erklärung, welche, wenn ich nicht irre, wohl zuerst von Slaby ausgesprochen wurde, erscheint die, welche die Widerstandsänderung durch Zusammenschweissen des Kontaktes erklären will, woher sich auch der Name Fritter für solche Kontakte eingebürgert hat. Es lassen sich so ja allerdings verschiedene dieser Erscheinungen erklären, andere indessen fallen vollständig heraus, so z.B. die Tatsache, dass gewisse Kontakte im Gegensatz zu anderen eine Widerstands Vermehrung statt einer Verminderung aufweisen und dass sich die Erscheinung auch bei Kontakten in flüssigen und selbst festen Dielectricis zeigt.

Wohl hauptsächlich die letztere Erscheinung führte zu einer anderen Erklärung, die die elektrostatische Kapazität solcher Kontakte ins Auge fasst. Wenn die letztere auf den ersten Blick auch unendlich klein erscheint, so zeigt doch eine nähere Betrachtung, dass hier trotz der Kleinheit der Elektroden doch ansehnliche Kapazitäten im Spiele sein können, da diese Elektroden eine so geringe Entfernung von einander besitzen, dass schliesslich der Ausdruck für die Kapazität die Form % annimmt, d.h. dass die Kapazität beliebige Werte annehmen kann.

Eine dritte Erklärung endlich glaubte man darin gefunden zu haben, dass man annahm, jedes Metallteilchen sei von einer Gasschicht umgeben, welche die metallische Berührung verhindert und durch einen Funken explosivartig fortgeschleudert wird, so dass nun eine metallische Berührung eintritt.

Alle diese Erklärungen sind nicht imstande, die Gesamtheit der Erscheinungen unter sich zu begreifen, auch dürfte die hohe Empfindlichkeit, welche der unvollkommene Kontakt besitzt, kaum die Voraussetzung eines Funkens, welche bei der Mehrzahl der Erklärungen notwendig ist, rechtfertigen. Die wichtige Erscheinung der Selbstauslösung, welche allen unvollkommenen Kontakten mehr oder weniger eigen ist, tritt als ein neues Moment hinzu, um alle bisherigen Erklärungen über den Haufen zu werfen, und wenn man auch die Selbstauslösung in vielen Fällen durch minimale Erschütterungen zu erklären geneigt sein könnte, so tritt diese Erscheinung doch auch da auf, wo diese Erklärung versagt, z.B. bei der Schäferschen Platte.

Da ich mich ziemlich lange und eingehend mit dieser Materie beschäftigen konnte, so habe auch ich nacheinander die angeführten Theorieen anerkannt und wieder verworfen, und je weiter ich in diese Materie eindrang, um so wenigerkonnte ich die Erscheinungen mit den bisherigen Theorieen in Einklang bringen.

Bis vor kurzem noch inmitten der Praxis stehend, in der man für Theorieen gewöhnlich leider keine Zeit hat, lag mir der Wunsch, die Theorie mit der Praxis in Uebereinstimmung zu bringen, ferner als jetzt, wo ich hierzu genügende Müsse habe, um meine Erfahrungen zu sammeln und zu sichten; und so bin ich auf eine Erklärung gekommen, die meines Wissens bisher niemand ausgesprochen hat, und die bei aller Einfachheit mir nicht nur sämtliche bisher beobachteten Erscheinungen zu erklären scheint, sondern auch eine Aufklärung über die hohe Empfindlichkeit des unvollkommenen Kontaktes gibt und zugleich einen Fingerzeig, wie man diese Empfindlichkeit zu steigern imstande ist. Danach wären diese Erscheinungen auf eine reine Wärmewirkung zurückzuführen.

Bekanntlich ist die in einem Leiter durch den elektrischen Strom erzeugte Wärme proportional mit J2r, wenn J den Strom und r den elektrischen Widerstand des Leiters bedeutet. Braun hat nun seinerzeit darauf aufmerksam gemacht, dass die Wärmemenge, welche ein Strom hervorruft, von dem Strome abhängig ist, welcher bereits in dem Leiter fliesst. Ist nämlich w die Wärmemenge, welche ein Strom i hervorbringt, so ist, wenn vorher kein Strom vorhanden war:

w = i2r

War indessen schon ein Strom J vorhanden, der an sich die Wärmemenge W hervorbringt, so ist

W + w = (J + i)2r

d.h. da W = J2r

w = 2Jir + i2r

d.h. also: Die Wärmemenge, welche die Aenderung des ursprünglichen Stromes hervorbringt, ist angenähert proportional dem ursprünglichen Strome.

Wenden wir dies auf den unvollkommenen Kontakt an: Derselbe wird immer von einem konstanten Strome durchflössen, kommen hierzu die durch die elektrischen Wellen erzeugten Stromstösse, die bald gleich, bald entgegengesetzt gerichtet sind, so können wir den dadurch erzeugten thermischen Vorgang durch folgende Gleichung darstellen:

W + w = (J ± i)2r

Also

w = ± 2Jir + i2r

Die durch die Wechselströme hervorgerufene Aenderung der Wärmemenge ist also positiv oder negativ je nach der Stromrichtung und proportional dem ursprünglichen Strome, d.h. sie addiert sich in der Hauptsache nicht einfach zu der bereits vorhandenen Wärmemenge, sondern sie addiert oder subtrahiert sich je nach der Stromrichtung; der Teil, welcher sich immer addiert, ist unendlich klein von der zweiten Ordnung, |194| Es treten also Wärmepulsationen auf, welche dem ursprünglich vorhandenen konstanten Strome angenähert proportional sind.

Bei diesem Vorgänge wird also der Widerstand des unvollkommenen Kontaktes den Wärmepulsationen folgen, d.h. er wird um einen Mittelwert oszillieren mit der Periode des Unterbrechers, und so kommt es, dass in einem eingeschalteten Telephon die Periode des Unterbrechers zu Gehör kommt.

Die Tatsache, dass man in einem empfindlichen Galvanoskop je nach Umständen eine Stromvermehrung oder auch Verminderung beobachtet, von welcher auf eine Widerstandsverminderung oder Vermehrung geschlossen werden muss, würde ihre Erklärung darin finden, dass in der Hauptsache nur der Unterbrechungsfunke wirkt, sodass + i absolut einen viel grösseren Wert hat als – i, sodass die Pulsationen hauptsächlich nur nach einer Seite erfolgen, woraus je nach der Richtung des konstanten Stromes eine Widerstandsvermehrung oder Verminderung folgen würde.

Im übrigen würden auch etwaige Widerstandsänderungen nach einer anderen als der erwarteten Richtung an sich gegen die entwickelte Theorie nicht sprechen, da der unvollkommene Kontakt ein so verwickeltes Ding ist, dass hier sekundäre Erscheinungen das Hauptresultat nicht nur zu verschleiern, sondern sogar vollkommen zu entstellen geeignet sind.

Man denke sich nur den jetzt wohl gebräuchlichsten Kontakt zwischen Kohle und Stahl. Der Widerstand desselben setzt sich zusammen aus dem Widerstand der Kohle, dem des Stahles und einem undefinierbaren, der in der Hauptsache wohl aus Luft und einem Gemisch von Kohle- und Stahlpartikelchen besteht. Was aus diesem Widerstände bei Erwärmung wird, kann man mit dem besten Willen nicht voraussagen; denn die Kohle vermindert ihren Widerstand, der Stahl vermehrt den seinen, und der dritte undefinierbare Widerstand kann infolge von Verschiebung der Partikelchen jeden beliebigen Wert annehmen.

Wenn sich also eine Verminderung zeigt, wo vielleicht eine Vermehrung erwartet wurde, oder umgekehrt, so kann dies nicht Wunder nehmen, ausschlaggebend ist nur, dass im Telephon immer nur die Oszillation des jeweiligen Widerstandswertes beobachtet wird, welche sich aus obiger Theorie zwanglos erklären lässt; alles andere ist sekundärer Natur und hängt von den Versuchsbedingungen ab.

Der Beweis für die Richtigkeit dieser Erklärung liesse sich einwandfrei dadurch führen, dass man den unvollkommenen Kontakt durch einen metallischen Widerstand ersetzt, der so beschaffen ist, dass die in Frage kommende minimale Energiemenge ihm eine genügende Temperaturerhöhung erteilen kann, dass er den Temperaturschwankungen genügend schnell folgen kann und einen Widerstand und eine Masse von der Grössenordnung des unvollkommenen Kontaktes besitzt. Ein solcher Widerstand müsste dieselben Erscheinungen zeigen, wie der unvollkommene Kontakt, nur die sekundären Störungen würden fortfallen.

Mit einem Platinband von 1 mm Breite, 0,001 mm Dicke und 60 Ohm Widerstand glückte es mir noch nicht, die erwartete Erscheinung zu erhalten, da jedenfalls die Masse dieses Widerstandes noch viel zu gross ist, als dass die geringe Energie der elektrischen Wellen darin eine genügende Temperaturerhöhung hervorbringen konnte, um die der Empfindlichkeit des Telephons entsprechende Widerstandsänderung zu bewirken. Ich glaube indessen, dass ein versilberterQuarzfaden von genügender Feinheit diesen Bedingungen bereits genügen würde. Derselbe würde dann einen Empfangsapparat darstellen, der an Zuverlässigkeit nichts zu wünschen übrig liesse und dessen Empfindlichkeit nur durch seine Stromkapazität begrenzt wäre. Vielleicht würde auch ein sehr dünner, bis zur Weissglut erhitzter Kohlefaden schon die Erscheinung zeigen, da in ihm die primäre Stromstärke auf einen sehr hohen Wert gebracht werden kann.

Leider habe ich jetzt keine Gelegenheit, diesen Beweis experimentell zu führen und habe ich mich daher entschlossen, diese Arbeit der Oeffentlichkeit zu übergeben in der Hoffnung, dass jemand, der diese Gelegenheit hat, sich dadurch angeregt fühlt, dieses interessante Experiment anzustellen.

Im übrigen würde, die Richtigkeit dieser Erklärung vorausgesetzt, zugleich der Weg angedeutet sein, den man gehen muss, um zu möglichst empfindlichen und exakten Empfangsapparaten in der drahtlosen Telegraphie zu gelangen.

Dieser Weg ist dadurch bezeichnet, dass man trachtet die primäre Stromstärke möglichst gross zu machen, ebenso den Widerstand, die Masse des Widerstandes aber möglichst klein. Alle übrigen im Stromkreise enthaltenen Widerstände (Batterie und Telephon) müssten klein sein gegen den Widerstand des eigentlichen Empfängers. Will man, auch wenn obiges Experiment zu positiven Ergebnissen führt, von dem unvollkommenen Kontakt, der immerhin trotz aller sonstigen Nachteile, die zu Störungen Veranlassung geben, die Grösse des Widerstandes und seine im Verhältnis dazu geringe Masse für sich hat, nicht absehen, so muss man solche Kontakte wählen, deren kritische Spannung möglichst hoch ist, d.h. bei denen der Kontakt trotz hoher Spannung (und Stromstärke) noch unvollkommen bleibt und deren Wärmeleitungsfähigkeit möglichst gering ist.

Bezeichnet man mit r den Widerstand eines solchen Empfangsapparates, mit m seine Masse, und mit i die maximale Stromstärke, die er auszuhalten vermag, ohne an seiner Eigenschaft der Widerstandsänderung einzubüssen, so kann man seine Empfindlichkeit ausdrücken durch

d.h. je grösser E ausfällt, desto grösser ist seine Empfindlichkeit. Hat E ungefähr den Wert 1000 Ohm–Amp./g, so tritt die erwartete Erscheinung noch nicht auf, wie ich mich durch ein Experiment überzeugte; ich vermute indessen, dass mit E = 100000 Ohm–Amp./g sich die Erscheinung in einem metallischen Widerstand schon deutlich zeigen dürfte.

Alle mir bis jetzt bekannten Erscheinungen des unvollkommenen Kontaktes lassen sich auf diese Weise zwanglos erklären, auch die Schäfersche Platte und selbst die Kontakte in flüssigen und festen Dielectricis fallen hierunter. Auch die Tatsache, dass – man durch Hintereinander- oder Parallelschaltung solcher Kontakte keinen Vorteil erreicht, ergiebt sich ohne weiteres aus dieser Theorie und die sogenannte Selbstauslösung entpuppt sich als eine einfache Wärmeerscheinung. Man könnte hiernach den unvollkommenen Kontakt als eine Umkehrung des Bolometers betrachten. Vielleicht dürfte gerade diese letztere Erwägung viel zu seiner Verbesserung und Vervollkommnung beitragen.

In wie weit thermoelektrische Effekte hier mit im Spiele sind, müsste der Versuch ergeben. Jedenfalls dürften manche Komplikationen auch noch solchen Effekten zuzuschreiben sein, wodurch die Aussichten auf Vervollkommnung dieses Empfangsapparates aber nur erweitert werden.

Suche im Journal   → Hilfe
Alternative Artikelansichten
  • XML
  • Textversion
    Dieser XML-Auszug (TEI P5) stellt die Grundlage für diesen Artikel.
  • BibTeX
Feedback

Art des Feedbacks:
Ihre E-Mail-Adresse:
Anmerkungen: