Titel: Zur Theorie der Frankschen Röhre.
Autor: Anonymus
Fundstelle: 1904, Band 319 (S. 141–142)
URL: http://dingler.culture.hu-berlin.de/article/pj319/ar319042

Zur Theorie der Frankschen Röhre.

Die vor einigen Jahren den Wassertechnikern empfohlene Franksche Röhre soll dazu dienen, in einem Wasserlaufe die längs einer beliebigen Senkrechten stattfindende mittlere Geschwindigkeit durch eine einzige Beobachtung zu ermitteln. (Man sehe die Besprechung von Ing. Wilh. Müller D. p. J. 1897, 304, 10.

Das Prinzip beruht auf folgenden Annahmen:

Textabbildung Bd. 319, S. 141

Das unten geschlossene Rohr AB ist mit Löchern von 2 mm Durchmesser versehen, die längs einer Geraden in gleichen Abständen (von 25 mm durch die Röhrenwand gebohrt sind.

Das Rohr wird senkrecht in den Wasserlauf gestellt, die Löcher gegen die Strömung gerichtet. Die über dem Wasserspiegel liegenden Löcher sind in den Zylinder Z eingeschlossen.

Der Wasserstoss wirkt gegen die einzelnen Löcher wie bei der Pitotschen Röhre, und es steigt infolgedessen das Wasser im Zylinder Z um eine Höhe h über den Wasserspiegel w w, welche durch die Stärke des Wasserstosses bestimmt ist.

Seien die gegen die Oeffnungen a1, a2 . . . an wirkenden Geschwindigkeiten v1, v2 . . . vn, also die mittlere Geschwindigkeit,

so nimmt Frank an, es sei v0 = f (h), d.h. es sei diemittlere Geschwindigkeit eine als bekannt angenommene Funktion der Wassersäulenhöhe h, und es hänge diese, ähnlich wie bei Pitotschen Röhre, nur von einer durch Versuch zu bestimmenden Konstante ab.

Allein, eine solche Funktion gibt es nicht, und aus h kann die mittlere Geschwindigkeit überhaupt nicht abgeleitet werden, wie hier gezeigt werden soll.

Der Stoss des Wassers übt bekanntlich gegen ein Loch vom Profil a einen Druck aus, welcher = a μ v2 für die Geschwindigkeit v ist, wo μ eine Konstante bezeichnet. Durch diejenigen Löcher, für welche μ v2 > h (Druck der Wassersäule), wird Wasser ins Rohr getrieben, das sich längs der Rohrachse bewegt und durch diejenigen Löcher austritt, für welche μ v2 < h ist. Anfänglich schwankt h, aber bald bildet sich ein stationärer Zustand, und es tritt dann durch die einen Löcher ebensoviel Wasser aus, als durch die andern eintritt. h wird konstant, sobald die Summe aller äusseren Drucke gleich wird der Summe aller innern Drucke, oder wenn die algebraische Summe aller Drucke = 0 geworden ist.

Der Druck des Wasserstosses auf die Oeffnung ak ist a μ vk2, der ganze äussere Druck also = aμv2 + Hk, wenn Hk den statischen Druck des Wassers vom Spiegel aus bis zur Oeffnung ak bezeichnet. Auf der innern Seite der Röhre wirkt gegen das Loch ak der Druck einer Wassersäule von der Höhe Hk + h, so dass der nach innen gerichtete Gesamtdruck auf ak

= a (μvk2+ Hk) – a (Hk + h) = a (μv2k – h)

ist, also der Gesamtdruck auf sämtliche Löcher

a (μ v12 – h) + a (μv22 – h) + . . . + a (μvn2 – h) = (v12 + v22 + . . . + vn2) – a n h

Wenn Gleichgewicht eingetreten ist, muss dieser Ausdruck = 0 sein und also

(v12 + v22 + . . . vn2) – a n h = 0

woraus

|142|

Für n = l folgt hieraus, h = μu2 (Pitotsche, Röhre)

Für n > l erhält man aus h den Mittelwert des Quadrates der Geschwindigkeiten, nicht aber den gesuchten Mittelwert von v, der aus dieser Formel überhaupt nicht abzuleiten ist.

Die nach Franks Anleitung aus der Beobachtung abgeleitete Grösse liegt wohl zwischen der kleinsten und grössten Geschwindigkeit, welche längs der Röhre wirken, kann aber sehr stark vom Mittelwert abweichen.

Vorstehende Auseinandersetzung ist insofern nichtganz streng, weil der Reibung des Wassers bei der Bewegung im Innern der Röhre nach der Längenrichtung keine Rechnung getragen ist. Allein bei einer Lichtweite der Röhre von 40 mm und bei einem Lochdurchmesser von 2 mm wäre der Lochquerschnitt nur der vierhundertste Teil vom Röhrenquerschnitt. Träte durch eine Oeffnung das Wasser mit der Geschwindigkeit von 1 m ein, würde diese im Rohr sich auf 2,5 mm reduzieren. Die Summe aller Reibungen kann daher nur klein sein, und auf das Endresultat nur einen unwesentlichen Einfluss ausüben, dessen nähere Berechnung überflüssig erscheint (er vergrössert den Wert von h).

Dr. J. Amsler-Laffon.

Suche im Journal   → Hilfe
Alternative Artikelansichten
  • XML
  • Textversion
    Dieser XML-Auszug (TEI P5) stellt die Grundlage für diesen Artikel.
  • BibTeX
Feedback

Art des Feedbacks:
Ihre E-Mail-Adresse:
Anmerkungen: