Titel: WELLNER: Graphische Schwungradausmittlung usw.
Autor: Anonymus
Fundstelle: 1915, Band 330 (S. 161–166)
URL: http://dingler.culture.hu-berlin.de/article/pj330/ar330032

Graphische Schwungradausmittlung ohne Entwurf des Tangentialdruckdiagrammes.

Von Professor Dr. Emil Wellner in Brünn.

Inhaltsübersicht.

Es wird ein Verfahren zur Schwungradausmittlung beschrieben, welches darauf beruht, den Widerstand im Kurbelkreise in das Kraftdiagramm zurückzukonstruieren. Es ergibt sich, daß bei Einzylinder- und Tandem-Dampfmaschinen der größte Energiebetrag unmittelbar angegeben werden kann, wodurch die Konstruktion für den Rückgang entfällt. Hierauf wird die Anwendungsmöglichkeit bei Verbundmaschinen mit von Null verschiedenen Kurbelwinkeln besprochen und auf die der Konstruktion günstigen Bedingungen bei Verbrennungsmotoren hingewiesen.

–––––

Im allgemeinen werden bei Maschinen mit Kurbeltrieb, die einen konstanten tangentiellen Widerstand am Kurbelzapfen zu überwinden haben, die für die Größe des Schwungradgewichtes maßgebenden Energiebeträge aus den Ueberschußflächen des Tangentialdruckdiagramms entnommen.

Im Folgenden wird ein Verfahren besprochen, welches die Umkehrung des gebräuchlichen Weges darstellt, indem die wirkenden Kräfte nicht am Kurbelzapfen, sondern im Arbeitsdiagramm verglichen werden. Es ist hierzu nur erforderlich, den konstanten Widerstand im Kurbelkreise in das Kraftdiagramm des Motors zurückzukonstruieren.

A. Baumann1) benutzt diesen Weg, um bei Einzylinder- und Tandemmaschinen die positiven Ueberschußflächen des Hinganges zu ermitteln, und stellt unter gewissen Annäherungen Tabellen zur direkten Auffindung des Schwungradgewichtes auf. Ebenso gibt L. Feigl2) in einer Arbeit, auf welche wir noch später zurückkommen, unter Benutzung seiner Konstruktionen über die Bewegungsverhältnissevon Kurbeltrieben3) eine einfache Darstellungsweise der Widerstandskurve.

Der Vorteil, der sich hierbei ergibt, liegt darin, daß das Aufrollen des Kurbelkreises entfällt, und an Stelle des unregelmäßig verlaufenden Tangentialdruckes eine gesetzmäßige, leicht konstruierbare Kurve tritt. Außerdem wird im Folgenden gezeigt, daß sich auf diese Art eine Abstufung in der Größe der Energieflächen feststellen läßt, welche es gestattet, bei Einzylinder- und Tandemanordnungen die größte Fläche unmittelbar anzugeben.

Textabbildung Bd. 330, S. 161

Die Darstellung der Kurve nach L. Feigl veranschaulichen die Abb. 1 und 2. Mit der aus Abb. 1 folgenden Beziehung für den Kolbenwiderstand

4) . . . . (1)

Spannung pi ersetzt werden. .

ergibt sich die Konstruktion nach Abb. 2; es wird in der Mittellage des Kolbens die Ordinate OA = Q gemacht; den einer Kurbelstellung α entsprechenden Kolbenwiderstand W erhält man nach Ziehen von A B || C x ( || G H) |162| in der Strecke O B, welche nach D E, in die zu α gehörige Kolbenstellung übertragen wird.

Hierzu ist zu erwähnen, daß das etwas aus der Hubmitte gerückte Minimum, wie aus dem Vergleich mit der Kolbengeschwindigkeit

Textabbildung Bd. 330, S. 162

folgt, mit dem Maximum der letzteren zusammenfällt, und daher durch die Ordinate in a (Nullwert der Kolbenbeschleunigung) gegeben ist.

Die Kurve für den Rückgang ist mit der für den Hingang entworfenen identisch, nur wird sie in umgekehrter Richtung, also von rechts nach links, durchlaufen.

Für die Annäherung unendlich langer Schubstange wird die Kurve symmetrisch und vereinfacht sich ihre Konstruktion nach

wesentlich.5)

Bleibt man, den tatsächlichen Verhältnissen entsprechend, bei endlicher Stangenlänge, so ergibt sich die Notwendigkeit, die Fläche unter der W-Kurve von der Totlage bis zu irgend einer Kolbenstellung x auszuwerten (Abb. 3).

Textabbildung Bd. 330, S. 162

Da diese die bis dahin zu überwindende Widerstandsarbeit vorstellt, kann sie aus dem dazu gehörigen Kurbelwinkel α ermittelt werden, denn es besteht

. . . (2)

was auch die Auswertung des Integrals unter Bezugnahme auf Gleichung (1),

und die Getriebebeziehung

unmittelbar ergibt.

Die fraglichen Flächen können daher in einfacher Weise durch Sektorflächen vom Radius p ausgedrückt werden, wobei für letzteren die Konstruktionsbedingung

. . . . . . (3)

zu erfüllen ist. (In Abb. 3 bezeichnen die gleichen Ziffern zusammengehörige Kolben- und Kurbelstellungen, die nach L. Feigl6) oder A. Goldberger7) bestimmt werden können.)

Textabbildung Bd. 330, S. 162

Uebrigens sieht man, daß nach Gleichung (2) beim Durcheilen gleicher Kurbelwinkel gleiche Widerstandsarbeiten zu leisten sind, so daß nach Uebertragen von Bogen 01' nach 1' 2' Fläche (∞ 310) auch durch Fläche (1243) dargestellt werden könnte.

Für die folgenden Betrachtungen ist es am zweckmäßigsten, Gleichung (2) für das Intervall α = 0 bis aufzuschreiben;

. . (4)

Die Fläche wird daher der halben Hubarbeit der Maschine gleich, wobei pi die mittlere indizierte Spannung des Arbeitsdiagramms von der Fläche D bedeutet.

1. Einzylinder-Anordnungen.

In Abb. 4 sind die Kraft- und Widerstandskurven einer Einzylinder Dampfmaschine für Hin- und Rückgang dargestellt und die maßgebenden Energieflächen mit A1 bis A4 bezeichnet; die Ordinaten der Kraftlinie sind hierbei als wirksame Kreuzkopfdrücke aus den Dampfüberdrücken |163| und den Massendrücken konstruiert. Die Kolbenwege xa und xb entsprechen .

Man sieht, daß die Flächen A1 und A3 unmittelbar planimetrierbar sind, während A2 = A2' + A2'' und ebenso A4 = A4' + A4'' aus zwei ins Unendliche reichenden Teilen bestehen.

Die Größe A2 findet sich, mit Benutzung von Gleichung (4) und den in Abb. 4 gekennzeichneten Größen F aus

woraus

A2 = (A1 + F1) – F2 . . . . (5)

bzw. analog

A4 = (A3 + F2) – F1 . . . . (6)

folgt.

Danach sind beide in endlicher Form dargestellt, und lassen sich durch Planimetrierung bestimmen.

Von diesen vier Flächen ist bei Einzylinder-Anordnungen die größte für die Schwungradberechnung heranzuziehen.8)

a) Untersuchung der Größen A1 bis A4.

Im Folgenden soll nun gezeigt werden, daß sich zwischen den einzelnen Beträgen eine bestimmte Größenabstufung von vornherein feststellen läßt, wodurch die Ausmittlung aller vier Flächen und auch der Entwurf des Rückganges entbehrlich wird.

Zu diesem Behufe ist in Abb. 5 die Zusammensetzung der drei Größen – Kolbenkraft, Massendruck, Widerstand – in der Weise durchgeführt, daß die beiden letzteren zu einer Kurve vereinigt sind. Dadurch bleibt die Kolbenkraft für sich übrig und, da diese unter der Annahme gleicher Dampfverteilung auf beiden Zylinderseiten für Hin- und Rückgang gleich ist, wird der Vergleich der analogen Flächen leicht durchführbar.

Für den Hingang (voll ausgezogen) sind demnach Widerstand 1 und Massendruck 1' zu Kurve I, für den Rückgang (strichliert) ebenso 2 und 2' zu Kurve II vereinigt.

Zunächst besteht die Ungleichung

A2' > A4' . . . . . . (7)

In Abb. 5 erscheint nämlich

A2' – A4' = ∞ c e = ∞ c d + c d e . . (8)

wobei man das Stück c d e im Sinne der Untersuchung unterdrücken kann. Bezeichnen W die Ordinaten der Widerstandskurven, m jene der Massendruckkurven, und zwar mit dem Index 1 für den Hingang und mit Index 2 für den Rückgang, so läßt sich die Fläche ∞ c d ausdrücken durch

oder in abgekürzter Schreibart

. . . . . (9)

Textabbildung Bd. 330, S. 163

wobei den Flächenstreifen zwischen den Widerstands-, jenen zwischen den Massendruckkurven bedeutet; da beide Summanden stets positiv bleiben, ist Ungleichung (7) unter allen Umständen erfüllt.

Beachtet man ferner, daß die Fläche des Dampfdiagramms in Abb. 4 gleich jener unter der Widerstandskurve gelegenen ist, so folgen die zwei Gleichungen (s. Fußnote 8).

A1 = A4'' + A2' . . . . (10)

und

A3 = A2'' + A4' . . . . . (11)

welche im Verein mit Ungleichung (7)

A1 > A4 . . . . . . (12)

beziehungsweise

A2 > A3 . . . . . . (13)

ergeben.

Die Beziehungen (12) und (13) bestehen ganz unabhängig von der Größe der Massendrücke für alle Verhältnisse; man entnimmt daraus, daß A3 und A4, und somit auch der Rückgang, unter allen Umständen ausgeschaltet bleiben, und nur die beiden Flächen A1 oder A2 maßgebend sein können.

Verbindet man, um den Vergleich von A1 und A2 durchzuführen, Gleichung (10) mit

A2 = A2' + A2'',

so folgt

A2 – A1 =A2'' – A4'' . . . (14)

oder mit den Bezeichnungen der Abb. 5

A 2 – A 1 = ∞ af.

|164|

Für das Ergebnis der Untersuchung ist es belanglos, wenn man statt dessen

A2 – A1 = ∞ a b

setzt.

Es ergibt sich dann mit den analogen Bezeichnungen, die zu Gleichung (9) führten,

. . . . . (15)

und somit

. . . . (16)

Da nun für ein gegebenes Kraftdiagramm (pi) für jeden Betrag x1 einen bestimmten Wert besitzt, sieht man unmittelbar, daß das Größenverhältnis A2 zu A1 nur von den Massendrücken () abhängig ist. Die Grenze wird bei

. . . . . . (17)

erreicht.9) Diese läßt sich durch Auswertung der bezüglichen Integrale feststellen.

Nach Gleichung (2) ergibt sich

wobei α1 und α2 die zu x1 gehörigen Kurbelwinkel des Hin- und Rückganges bezeichnen.

folgt unter Benutzung der Beziehungen

wobei den Massendruck in der Totlage bei unendlich langer Schubstange bedeutet, und den exakten Werten

für mit

Gleichung (17) erscheint dann in der Form

Die hieraus berechneten Beträge sind für die laufenden Werte in nachstehender Tabelle zusammengestellt.

0,05 0,1 0,2 0,25 0,3 0,35 0,4 0,5 0,6
2,207 1,669 1,364 1,319 1,313 1,325 1,367 1,515 1,785

Graphisch zeigt sich der Zusammenhang in Abb. 6. Die Untersuchung ergibt demnach, daß A2 > A1 jedenfalls so lange besteht, als

. . . . (18)

ist.

Textabbildung Bd. 330, S. 164

Erst bei Ueberschreiten dieser Grenze kann A1 der größere Betrag werden, und zwar dann, wenn die Werte bei dem vorhandenen in dem Raume oberhalb der Kurve in Abb. 6 liegen. Stehen nun in einem konkreten Falle die Tabellenwerte für nicht zur Verfügung, so ist es, falls Gleichung (18) nicht erfüllt ist, am zweckmäßigsten, beide Beträge A1 und A2 auszumitteln.

Wollte man noch, obzwar dies auf das Resultat keinen Einfluß mehr hat, die Größenordnungen der übrigen Flächen feststellen, so kann dies mit der aus Gleichung (10) und (11) folgenden Beziehung.

A2 – A1 = A3 – A4 . . . . (19)

und den sich aus den Gleichungen (8), (9), (14), (16), (19) ergebenden Ansätzen

. . (20)

und

. . (21)

geschehen. Man sieht, daß die rechte Seite von Gleichung (20) stets positiv bleibt, wenn Gleichung (18) erfüllt ist, während dies bei Gleichung (21) erst bei Ueberschreiten der Grenze sicher der Fall ist.

|165|

Es ergeben sich somit die folgenden einen guten Ueberblick gewährenden Größenabstufungen:

Hierbei gilt je die erste Zeile, wie man sich aus den Werten Φ und ψ in den Gleichungen (20) und (21) leicht überzeugt, für den häufigeren Fall x2x1, während die zweite erst zur Geltung kommen kann, wenn x2 < x1 wird.

Das Gesamtergebnis der Untersuchung läßt sich also dahin zusammenfassen, daß lediglich A1 oder A2 der größte Energiebetrag werden kann; welcher von beiden der maßgebende ist, hängt nur von der Größe der Massendrücke ab, und erscheint durch Gleichung (18), beziehungsweise den Zusammenhang der Abb. 6 gegeben.

b) Vorgang zur Ausmittlung des Schwungradgewichtes.

Nach dem Vorhergehenden erübrigt nur die Bestimmung von A2 oder A1. Hierzu zeichnet man (Abb. 7) das Diagramm der wirksamen Kreuzkopfdrücke und die Widerstandskurve für den Hingang, wie eingangs erörtert, und trägt den Kolbenweg x für ein.

Textabbildung Bd. 330, S. 165

Für den Geltungsbereich von Gleichung (22) findet man A2 nach Gleichung (5); die Fläche F2 ergibt sich hierbei in Abb. 7 als das Stück a b c d e a, wenn man, wie angedeutet, die Massendrücke von der Eintrittsspannung (f g) als Nullachse abträgt; man kommt dann mit einer Planimetrierung aus, wenn man (z.B. in a beginnend) A1 + F1 rechts, F2 anschließend links umfährt.

Für den Fall der Gleichung (23) planimetriert man unmittelbar die Fläche A1.

Das Schwungradgewicht folgt in bekannter Weise aus

. . . . . . . (24)

worin vm die Geschwindigkeit im Trägheitsradius des Schwungrades und δ den Ungleichförmigkeitsgrad bedeuten.10)

Zum raschen Auftragen der Widerstandskurve seien x hier noch für Q = 1 die zu den jeweiligen Werten sich ergebenden Beträge W des Hinganges angegeben.

0 0,0125 0,025 0,05 0,1 0,2 0,3 0,4 Minim.
0,455
W 4,1143 2,9318 2,1068 1,5403 1,1710 1,03761 0,9869 0,9806

0,5 0,6 0,7 0,8 0,9 0,95 0,975 0,9875 1
W 0,9849 1,0260 1,1219 1,3179 1,8067 2,5247 3,5518 5,0117

2. Mehrzylinder-Anordnungen.

Bei diesen Maschinen sind die Arbeits- und Widerstandsdiagramme der einzelnen Zylinder, der vorliegenden Kurbelversetzung entsprechend, in einem gemeinsamen Diagramm zu vereinigen, und muß hierzu bei Verbundanordnungen eine Reduktion der Diagramme auf gleichen Hub und Zylinderdurchmesser vorangehen.

Für Tandem-Anordnungen stimmt die Aufgabe mit dem Falle der Einzylindermaschine völlig überein; die beiden Diagramme können unmittelbar addiert werden da man sich ja ebensogut die ganze Kraft in einem Zylinder wirksam denken könnte. Die gemeinsame Widerstandskurve ergibt sich hierbei aus einem Widerstände im Kurbelkreise

Textabbildung Bd. 330, S. 165

Auch die Betrachtung über die Größenordnung der einzelnen Energieflächen bleibt hier bestehen, da diese ja von dem Verlaufe der Kraftkurve völlig unabhängig ist.

Für den allgemeinen Fall einer Kurbelversetzung a = a2 – α1 nach Abb. 8 (die Zeiger 1 und 2 deuten die Zugehörigkeit zu je einer Maschinenseite an) müssen die gleichzeitig wirkenden Kräfte in einem Diagramm, z.B. dem des Zylinders 1, zusammengesetzt werden. Hierzu muß der jeweilige der Kraftwirkung P2 des Zylinders 2 entsprechende Tangentialdruck T2 in das Diagramm 1 zurückkonstruiert werden; er würde dort eine Kraft P2' nach folgender Gleichung ergeben

. . (25)

deren Konstruktion Abb. 8 veranschaulicht. Gleichung (25) läßt erkennen, daß für

α2 = 0 oder π . . . . P2' = 0,
für α1 = 0 „ π . . . . P2' = ∞
|166|

wird. P2 ruft nämlich in letzterer Stellung einen endlichen Tangentialdruck hervor, welcher aber von Kolben 1 nur durch eine unendlich große Kraft P2 erzeugt werden könnte. Es ergibt sich daher, daß die gemeinsame Kraftkurve in den Totlagen unendliche Werte annimmt.

Für die praktische Durchführung ist der folgende, prinzipiell mit dem Vorhergehenden übereinstimmende Weg zweckmäßiger, da sich die Ueberschußflächen schärfer ergeben. Man entwirft Diagramm 1 (Kraft- und Widerstandskurve) wie bei einer Einzylindermaschine und setzt in demselben statt der Kräfte P2 die Ueberschüsse ± (P2W2) beziehungsweise ± (T2 – Q2) algebraisch mit P1 zusammen.

Die Konstruktion für den Hingang einer Zwillingsmaschine mit α = 90° zeigt Abb. 9; um z.B. an der Stelle x den Punkt a der gemeinsamen Kraftkurve zu finden, ermittelt man die dazugehörigen Kurbelwinkel α1 und α2, übertragt c d = P2W2 nach O e und erhält nach Abb. 8 in O f die gesuchte Größe b a.

Da bei diesen Anordnungen nicht die größte Fläche, sondern die algebraische Summe mehrerer aufeinanderfolgender Flächen maßgebend werden kann,11) sind alle Energieflächen für eine volle Umdrehung auszuwerten. Von den an den Hubenden gelegenen nicht abmeßbaren Größen müssen hierzu zwei unmittelbar bestimmt werden, während die restlichen zwei (als zusammenhängende Beträge) aus der Bedingung folgen, daß die algebraische Summe aller Flächen nach einer Umdrehung Null wird.

Um in Abb. 9 etwa das Stück 2 1 3 zu berechnen, bildet man die Differenz

2 I 3 = 2 I 10 – 3 I 10,

wovon der erste nach Früherem

ist, während der zweite die bis zur vorliegenden Kolbenstellung des Zylinders 1 geleistete Arbeit beider Zylinder darstellt; demgemäß ist

3110 = 0145 + 6789 = φ2 + φ3,

wobei die Ordinate 89 die I 1 entsprechende Kolbenstellung von Zylinder 2 bedeutet.

Es folgt also

Man ersieht aus dem Vorhergehenden, daß die Ausmittlung in diesen Fällen recht umständlich wird; dasDiagramm des Zylinders 1 entwirft sich wohl rascher als mittels des Tangentialdruckdiagramms, dem gegenüber steht aber der Nachteil der unscharfen Schnittpunkte I und IV, sowie der indirekten Bestimmung der an den Hubenden gelegenen Flächen; es dürften sich somit bei von Null verschiedenen Kurbelwinkeln auf diesem Wege keine wesentlichen Vorteile ergeben.

Textabbildung Bd. 330, S. 166

Zum Schluß sei noch darauf hingewiesen, daß die hier an Hand von Dampfdiagrammen gezeigten Konstruktionen bei Verbrennungsmotoren besonders vorteilhaft werden; bei Einzylindermaschinen, da immer der Ueber-schuß des Arbeitstaktes die negativen Größen der anderen Hübe auszugleichen hat, bei Mehrzylinderanordnungen wegen der häufig vorkommenden Kurbelwinkel von 0 oder 180 Grad.

|161|

A. Baumann, D. p. J. Bd. 317 1902 S. 293.

|161|

L. Feigl, Wien, D. p. J. Bd 326 1911 S. 529.

|161|

L. Feigl, Wien, Zeitschrift für Mathematik und Physik Bd. 58, 1910, Heft 1 u. 2.

|161|

Der Wert Q kann auch, wegen der Gleichheit der Arbeiten an Kolben und Kurbel, durch die mittlere, indizierte.

|162|

Für eine Kurbelstellung α ermittelt sich die Größe W durch Ziehen einer Parallelen (B C || O A) in dem Stück B C (Abb. 2a).

|162|

Siehe Fußnote 3.

|162|

A. Goldberger, D. p. J. Bd. 320 1905 S. 451.

|163|

L. Feigl ersuchte mich, eine in seiner Arbeit (Fußnote 2) unterlaufene Unrichtigkeit, auf die ich ihn aufmerksam machte, an dieser Stelle zu besprechen. Er gibt mit den Bezeichnungen der Abb. 4 als maßgebende Energiebeträge entweder A1 oder (A2' + A4'') an, während beide Werte einander gleich sind, da die Diagrammfläche

D = A1 + F1 + F3 – F4 = A4'' + F1 + F3 + A2' – F4

ist, und sich somit

A1 = A4'' + A2'

ergibt.

Ebenso beruht der Ansatz

A'2 + A4'' = D – A1

auf einem Versehen, der nach dem Vorhergehenden zur Folge hätte.

|164|

Es tritt dann ein Ueberschneiden der beiden Kurvenäste ∞ a und ∞ b ein.

|165|

Es sei hier erwähnt, daß sich bei der Annäherung unendlicher Schubstangenlänge die Schwungradausmittlung mittels |166| der Widerstandskurve für Ueberschlagsrechnungen besonders empfiehlt, da dann wegen der völligen Symmetrie alle vier Energieflächen gleich groß werden und lediglich A1 auszuwerten ist.

|166|

Tolle, Die Regelung der Kraftmaschinen, 2. Auflage 1909, S. 73 u. f.

Suche im Journal   → Hilfe
Alternative Artikelansichten
  • XML
  • Textversion
    Dieser XML-Auszug (TEI P5) stellt die Grundlage für diesen Artikel.
  • BibTeX
Feedback

Art des Feedbacks:
Ihre E-Mail-Adresse:
Anmerkungen: