Titel: HEINZ: Die Festigkeit der schraubenförmigen Nietnaht.
Autor: Anonymus
Fundstelle: 1919, Band 334 (S. 24–28)
URL: http://dingler.culture.hu-berlin.de/article/pj334/ar334009

Die Festigkeit der schraubenförmigen Nietnaht.

Von Ingenieur R. Heinz, Karolinental.

Vor der allgemeinen Einbürgerung der nahtlosen Mannesmannrohre standen die Rohre mit schraubenförmiger Schweißnaht – sogenannte „spiralgeschweißte Rohre“ – wegen ihrer großen Festigkeit hoch im Ansehen. Vor etlichen Jahren wurde die schraubenförmige Naht auch für genietete Blechrohre größeren Durchmessers verwendet. Doch waren für die Herstellung teuere Spezialmaschinen notwendig, durch welche die Gestehungskosten wesentlich erhöht wurden.

Textabbildung Bd. 334, S. 24

Die in Abb. 1 bis 3 dargestellten Gefäße und Rohrmantel für hohen Druck wurden nach einem patentierten Verfahren in der Kesselschmiede der M.-A.-G. vormals Breitfeld, Danek & Co. in Karolinental erzeugt. Nach diesem neuen Verfahren ist jede Kesselschmiede in der Lage, Blechmäntel mit Schraubennaht (genietet oder geschweißt) auch bis zu den größten Durchmessern in jeder Blechstärke mit den gewöhnlichen Hilfsmitteln ohne besondere Spezialmaschinen herzustellen.

Das Vorreißen der Bleche erfolgt einfach wie für gewöhnliche Kessel. Nach dem Vorreißen werden die Bleche gebohrt oder gelocht. Das Einrollen geschieht in der gewöhnlichen Blechbiegemaschine, die Bleche laufen schräg durch die Biegewalzen. An den Mantelenden entsteht kein Abfall, wenn aus einem längeren Blech durch einen schrägen Schnitt die trapezförmigen Endbleche hergestellt werden.

Textabbildung Bd. 334, S. 24

Nach diesem patentierten Verfahren können alle Druckgefäße, Turbinenrohrleitungen, Walzenwehre, Blechschornsteine und dergleichen mit schraubenförmiger Naht für große Durchmesser und hohe Drücke hergestellt werden. Bei langen Turbinenrohrleitungen ist die Ersparnis an Material und Nietarbeit besonders groß. Ein Hauptvorteil der schraubenförmigen Nietnaht gegenüber der Schweißnaht ist die Möglichkeit der Verwendung von hochwertigen Eisensorten (Nickelstahl usw.).

Die größte spezifische Beanspruchung tritt in einem zylindrischen Blechmantel bei Innendruck in der Erzeugenden des Zylinders auf (Richtung der Längsnaht). Bei Anwendung der gewöhnlichen Längsnietnaht fallen die Nietlöcher in die zumeist beanspruchte Blechpartie; die Verschwächung durch die Nietlöcher bedingt eine wesentliche Erhöhung der Materialstärken. Bei der schraubenförmigen Nietnaht liegt in der Erzeugenden durchwegs das volle Blech. Die Verschwächung durch einzelne Nietlöcher ist durch die Ueberlappung der Naht mehr als genügend ersetzt.

Die bedeutende Ersparnis an Blechstärke bei Anwendung der schraubenförmigen Nietnaht gegenüber der gewöhnlichen Längsnietnaht (bis zu 25 v. H.) erhellt aus den beigefügten Rechnungsbeispielen. Auf Grund der Zahlenbeispiele werden dann die allgemeinen Formeln entwickelt.

Textabbildung Bd. 334, S. 24

Um die Rechnungsergebnisse ziffermäßig untereinander vergleichen zu können, wurden für sämtliche Beispiele die gleichen Annahmen gewählt, und zwar (Abb. 4 und 29):

Lichter Durchmesser D

= 1500 mm = 150 cm.

Innendruck p = 16 at.

Die zulässige spezifische Beanspruchung im Blech

kz = 800 kg/cm2.

Die zulässige spezifische Beanspruchung in den Nieten

ks = 650 kg/cm2 (einschnittig).1)

Die zulässige spezifische Beanspruchung in den Nieten ks = 600 kg/cm2 (zweischnittig).1)

Der Neigungswinkel der Nietnaht gegen die Erzeugende (Achse) ß = 46 ½°.

Dazu errechnet man mit einer vorläufig angenommenen Wandstärke von 15 mm (Rechenschieber): Mittlerer Umfang U = π (150 + 1 • 5) = 476 cm Ganghöhe der Schraube h = U ctg ß = 450 cm. Theoretische Länge der Naht .

Nachdem die bekannten Rechnungsformeln im Kesselbau auf die Längsnaht bezogen sind, gehen auch wir |25| von der Längsnaht aus, indem wir sie uns um den Winkel ß gedreht denken. Der Steigungswinkel der Schraube ist γ = 90° – ß. Die schraubenförmige Naht ist bei

ß = 0° eine Längsnaht, bei

ß = 90° eine Rundnaht.

Wie später bewiesen wird, treten in der einfach überlappten schraubenförmigen Nietnaht nur geringe Biegungsbeanspruchungen auf; dagegen wirken in der überlappten Längsnaht große Biegungsbeanspruchungen mit, welche ein Vergrößern des Sicherheitsfaktors bedingen (Hamburger. Normen). Da die überlappte Schraubennaht wie eine Rundnaht beansprucht wird, so könnte die schraubenförmige Nietnaht trotz der Ueberlappung mit demselben Sicherheitskoeffizienten berechnet werden, wie er für doppeltgelaschte Nähte vorgeschrieben ist.

Textabbildung Bd. 334, S. 25
Textabbildung Bd. 334, S. 25
Textabbildung Bd. 334, S. 25
Textabbildung Bd. 334, S. 25
Textabbildung Bd. 334, S. 25

Ein geschlossenes Druckgefäß

(Mantel mit zwei Böden). (Abb. 4 bis 6.)

Für den praktischen Gebrauch ist die „vereinfachte Berechnungsart der Niete und Blechstärken“ zu verwenden.

Wir bezeichnen nach Forchheimer2) mit

S die auf die Längeneinheit des Parallelkreises (Querschnitt II in Abb. 5) wirkende Kraft.

T die auf die Längeneinheit des Meridians (Querschnitt II-II in Abb. 6) wirkende Kraft.

Wir erhalten als Gesamtkraft für den Querschnitt II .

Der Querschnitt II-II (Abb. 6) wird durch die Komponenten der Radialkräfte Δ Pr (Abb. 4) beansprucht.

Für die Mantellänge h ist3)

ΔP r = p • ΔU • h

, woraus

P = ΣΔP = phΣΔD =phD.

Diese Kraft verteilt sich für eine Schraubenganghöhe auf zwei Blechquerschnitte II-II (Abb. 6); somit für einen Querschnitt II-II.

a) Graphische Ermittlung. Die Kräfte P1 = 282 t und P2 = 540 t wirken gleichzeitig für eine Ganghöhe h auf die Nahtlänge L (Abb. 7). Das Dreieck ABC in Abb. 5 und 7 ist die in eine Ebene abgewickelte Schraube für eine Ganghöhe. Die Kräfte P1 und P2 ergeben in Abb. 7 die Resultante R = 610 t. Diese Kraft R verteilt sich gleichmäßig auf die Nahtlänge L steht aber nicht senkrecht auf der Nietnaht. Die Kraft R muß durch die Niete der Größe und Richtung nach unverändert übertragen werden.

Die Nietung (Abb. 8). Die notwendige Anzahl der Nietquerschnitte berechnet sich mit

Nietquerschnitte.

Für dreireihige einschnittige Nietung ist die Nietteilung (Abb. 8).

Die Blechstärke. In der Richtung der Längsnaht (nach der Erzeugenden) wirkt das volle unverschwächte Blech; ohne Berücksichtigung der versteifenden Ueberlappung würde hier eine Blechstärke genügen von . Unter diesen Wert kann die Blechstärke nicht sinken, selbst wenn für die schraubenförmige Naht eine kleinere Blechstärke genügen sollte.

Für die schraubenförmige Naht wäre der tragende Blechquerschnitt für die Länge L = 655 cm und die Blechstärke smin = 1,5 cm nach Abzug der Nietlöcher für die dreireihige Nietung nach Abb. 8:

Dieser Querschnitt wird durch die schräg wirkende Kraft R = 610 t (Abb. 7) gleichmäßig beansprucht. Die Resultante R zerlegt man (Abb. 9) in die Normalkraft N = 575000 kg und in die Schubkraft Q = 195000 kg.

Die Beanspruchung der Naht L im Blechquerschnitt F ist

|26|

auf Zug (Normalspannung) ,

auf Schub .

Die Hauptspannung4) berechnet sich mit

Nachdem für unser Beispiel kz = 800 kg/cm2 als zulässig angenommen wurde, erhöht sich die ursprüngliche Blechstärke (smin = 15 mm) für die schraubenförmige Naht auf

Textabbildung Bd. 334, S. 26

Die umständliche Zusammensetzung und Zerlegung der Kräfte nach Abb. 7 und 9 läßt sich in einfacher Weise in ein Bild (Abb. 10) vereinigen; mit fünf Strichen sind sämtliche Kräfte ermittelt.

Dasselbe geschlossene Druckgefäß mit gewöhnlicher Längsnaht. Die Kraft für ein Laufzentimeter der Längsnaht ist

Die Nietung (Abb. 11). zweireihig, zweischnittig (zulässige Beanspruchung für zweischnittige Niete ks = 600 kg/cm2 nach unserer Annahme). Einer Nietteilung t entsprechen vier Nietquerschnitte. Die Nietteilung

Das Güteverhältnis der Nietung

Die Blechstärke.

Wählt man stärkere Niete als in unserem Beispiel (d = 25 mm), so wird die Blechstärke sicherlich noch etwas größer.

Wir erhalten somit für den gleichen Durchmesser D = 1500 mm und Druck p = 16 at:

1. Bei Anwendung der schraubenförm. Nietnaht s = 16,1 mm.

2. Bei Anwendung der gewöhnl. Längsnietnaht s = 20,2 mm.

Die Ersparnis an Blechstärke bei Anwendung der schraubenförmigen Naht beträgt 4,1 mm; außerdem ist die Anzahl der Niete kleiner und die Herstellung der Nietnaht bequemer.

Verwendet man in der Längsnaht die „verjüngte Nietung“ oder die „verbreiterte Innenlasche“, so kann trotz des Mehrmaterials und der Mehrarbeit die Blechstärke nicht auf das geringe Maß heruntergedrückt werden, wie es die schraubenförmige Nietnaht ergibt.

Für die Ausführung wird die Blechstärke auf halbe oder ganze mm aufgerundet; auch wird die Nietteilung so gewählt, daß die Länge L ein Vielfaches der Teilung t bildet. Für unseren Zweck (Aufsuchen von Vergleichsgrößen) ist dies ohne Belang.

b) Rechnerische Ermittlung.

Textabbildung Bd. 334, S. 26

Für ein geschlossenes Druckgefäß lassen sich die auftretenden Kräfte der Größe und Richtung nach durch algebraische Formeln ausdrücken. Wir rechnen aber nicht mit dem mittleren Durchmesser Dm = (D + s), sondern blos mit dem lichten Durchmesser D; erfahrungsgemäß beeinflußt diese Vernachlässigung der Blechstärke s – wie wir uns überzeugen werden – das Resultat nur in sehr geringem Maße. Es ist somit

Die Kräfte berechnen sich mit

für die Längeneinheit der Naht L ist

für die Längeneinheit der Naht L ist

Textabbildung Bd. 334, S. 26

Nach Abb. 10 ist

für die Längeneinheit der Naht L ist

|27|

Den Größen , , ist der Ausdruck gemeinsam, welcher die Kraft für die Längeneinheit der gewöhnlichen Längsnaht bedeutet. Wählen wir diesen Ausdruck als Einheit (T = 1), so ist

5)

Textabbildung Bd. 334, S. 27
Textabbildung Bd. 334, S. 27
Textabbildung Bd. 334, S. 27
Textabbildung Bd. 334, S. 27
Textabbildung Bd. 334, S. 27

Diese Gleichungen sind in Abb. 12 als Schaulinien aufgetragen (wagerecht die Winkel, senkrecht die Werte in Hundertsteln). Alle Werte sind auf T (Kraft für die Längeneinheit der Längsnaht) bezogen. Drehen wir die Längsnaht um ß = 90°, so erhalten wir 50 v. H., d.h. die Kraft f. d. Längeneinheit der Rundnaht ist blos 50 v. H. der Kraft f. d. Längeneinheit der Längsnaht; mit anderen Worten: die Rundnaht wird bei einem geschlossenen Druckgefäß nur halb so beansprucht wie die Längsnaht.

Drehen wir die Längsnaht um ß = 50°, so erhalten wir 75 v. H., d.h. eine schraubenförmige Naht mit ß = 50° wird auf die Einheit der Nahtlänge nur ¾ mal beansprucht gegenüber der Längsnaht. Für eine Turbinenrohrleitung mit Stopfbüchse würde unter der Annahme, daß nur die Kräfte in der Längsnaht wirken (also P1 = 0) bei ß = 50° die schraubenförmige Naht nur 65 v. H. der Beanspruchung der Längsnaht erleiden (Schaulinie ).

Die Resultante R ist ihrer Größe nach für die Berechnung der Niete maßgebend. Für die Berechnung der Blechstärke brauchen wir auch den Winkel γ (Abb. 10) als Maß für das Schiefziehen der Kraft R. Mit Benutzung der früheren Werte ist

In Abb. 10 müssen somit die Strecken a = b sein (sofern mit D und nicht mit Dm gerechnet wird). In Verbindung mit der Formel

berechnen wir

Zur Bestimmung der Höchstwerte setzen wir den Differentialquotienten

Daraus folgt und max. . Der Höchstwert für den Winkel γ = 19° 28' wird bei einer Nahtneigung mit ß = 54° 44' erreicht.

Für ß = 0 und ß = 90° wird y = 0. In einem geschlossenen Druckgefäß wird die Längs- und Rundnaht nur durch Normalspannungen beansprucht.

Für die Berechnung der Blechstärke zerlegt man die Resultante R in die Normalkraft N und die Schubkraft Q (Abb. 10).

Mit Benutzung der Streckengleichung a = b ist

Textabbildung Bd. 334, S. 27

Wir können jetzt, wie im Zahlenbeispiel, berechnen:

Normalspannung ;

|28|

Schubspannung ;

Hauptspannung

Der schiefe Zug an einer Nietnaht. In Abb. 13 bis 17 denkt man sich nach J. W. Schwedler6) das Blech in einzelne tragende Streifen zerlegt, welche um die Niete geschlungen sind. Diese Zerlegung war früher im Brücken- und Kesselbau allgemein üblich. Nach Abb. 16 wäre bei t • cos γ = t – d das Blech durch den schiefen Zug am besten ausgenutzt. Für die Spannung 1 im Querschnitt a wäre in b die Spannung auch 1, nachdem a = b; die Hauptspannung mit Rücksicht auf das Schiefziehen ist in b nicht 1, sondern 1,54 (nach Abb. 18 für γ = 55°).

Die Anwendung der Zerlegung nach J. W. Schwedler hat somit unrichtige Rechnungsergebnisse zur Folge. Der einzig richtige Weg ist die Berechnung der Hauptspannung .7)

Wir berechnen nach Abb. 10:

Die Normalspannung .

Die Schubspannung .

Die Hauptspannung

Setzen wir , so erhalten wir

Diese Werte bilden in Abb. 18 eine Kurve, welche das umständliche Rechnen mit der Hauptspannung erübrigt. Der Winkel γ (von 0° bis 90°) ist das Maß für das Schiefziehen.

.

Beispielsweise ist in Abb. 10 der Winkel γ = 18½°. Aus Abb. 18 ist der Vermehrungsfaktor (für 18 ½°) . . . 1,045. Nach dem früheren Zahlenbeispiel ist R = 610 und F = 741 cm2. Die Hauptspannung ist

also derselbe Wert wie im früheren Zahlenbeispiel.

Man berechnet mit dem schiefen Zug eine gedachte Normalspannung und stellt diesen Wert durch einen Vermehrungsfaktor aus Abb. 18 richtig.

(Schluß folgt.)

|24|

Im Sinne der „Hambg. Normen“.

|24|

Im Sinne der „Hambg. Normen“.

|25|

Forchheimer: Die Berechnung ebener und gekrümmter Behälterböden (Verlg. Ernst & Sohn, Berlin).

|25|

Die Dampfkessel (Spalckhaver und Schneiders).

|26|

Taschenbuch „Hütte“ (1908) I, S. 426 und Kögler, Versuche im Eisenbau (Verlag Springer-Berlin).

|27|

|28|

Taschenbuch „Hütte“ I (1908, Seite 674), Dampfkesselnietungen.

|28|

Taschenbuch „Hütte“ I (1908, Seite 426), Hauptspannungen, und C. Bach. Elastizität und Festigkeit (Anstrengung bei gleichzeitig vorhandener Dehnung und Schiebung).

Suche im Journal   → Hilfe
Alternative Artikelansichten
  • XML
  • Textversion
    Dieser XML-Auszug (TEI P5) stellt die Grundlage für diesen Artikel.
  • BibTeX
Feedback

Art des Feedbacks:
Ihre E-Mail-Adresse:
Anmerkungen: