Titel: SEEMAN, Zugfedern mit und ohne Vorspannung.
Autor: Anonymus
Fundstelle: 1925, Band 340 (S. 89–91)
URL: http://dingler.culture.hu-berlin.de/article/pj340/ar340032

Zugfedern mit und ohne Vorspannung.

Von R. Seemann (Charlottenburg).

Uebersicht: Es werden Zugfedern mit und ohne Vorspannung untersucht und es wird gefunden, daß die Federungsarbeit einer Feder mit Vorspannung ein Max. hat, das bei gleichen Abmessungen der Feder um ⅓ größer ist, als die Federungsarbeit einer Feder ohne Vorspannung. Durch Verwendung einer Feder mit Vorspannung ist daher eine größere Wirtschaftlichkeit zu erreichen.

Unter Zugfedern werden zylindrische Schraubenfedern verstanden, speziell solche aus naturhartem rundem Draht, Klaviersaitendraht bzw. Bronzedraht, die durch eine an der Feder wirkende äußere Kraft P auf Zug beansprucht werden, wobei der Federdraht eine Beanspruchung auf Drehung erfährt.

Die Vorspannung der Zugfeder wird hergestellt, indem der Federdraht im kalten Zustande, kurz vor dem Aufwickeln auf den Wickeldorn, entgegengesetzt dem Wickelvorschritt, durchgebogen wird. Dadurch wird der Federdraht verdrillt und zwar nach der entgegengesetzten Seite, wie durch die Zugkraft. Die einzelnen Federgänge legen sich fest aufeinander und es ist eine äußere Zugkraft erforderlich, die größer als die Vorspannungskraft sein muß, damit bei einer solchen mit Vorspannung gewickelten Feder überhaupt eine Federung eintreten kann. Für den Fall, daß die äußere Zugkraft gleich der Vorspainnungskraft ist, tritt keine Federung ein, sondern es herrscht ein Gleichgewichtszustand zwischen den beiden Kräften.

Die einzelnen Federgänge werden nur dann gleiche Federung haben, wenn die Herstellung und der Werkstoff gleichmäßig ist. Die Vorspannung bleibt innerhalb der normalen Beanspruchung des Werkstoffs konstant. Die Größe der einer Feder erteilten Vorspannung hängt von dem verwendeten Werkstoff und von der Durchbiegung des Drahtes beim Wickeln der Feder und auch vom Windungsradius ab. Durch Versuche läßt sich die Abhängigkeit dieser Werte zahlenmäßig feststellen.

Die Vorspannung kann von ganz verschiedener Größe sein, aber niemals größer als die Zugkraft, die der Elastizitätsgrenze des Federdrahtes entspricht. Zugfedern, die mit Vorspannung gewickelt sind, nachträglich jedoch geglüht und durch Abschrecken in Wasser oder Oel gehärtet werden, haben ihre Vorspannung verloren. Druckfedern können nicht mit Vorspannung gewickelt werden, da hier der Federdraht beim Zusammendrücken der Druckfeder nur eine Drehungsbeanspruchungnach einer Richtung erfährt, während der Federdraht der mit Vorspannung gewickelten Zugfeder durch die Vorspannung nach der entgegengesetzten Richtung auf Drehung beansprucht wird, wie durch die Zugkraft, daher eine wechselnde Beanspruchung erfährt.

Eine Druckfeder kann wohl einen Vorhub erhalten, was fälschlich auch als Vorspannung bezeichnet wird, aber keine Vorspannung, da die Vorspannung in dem Federdraht das entgegengesetzte Drehbestreben erzeugt, wie die äußere Zugkraft. Es hat sich gezeigt, daß eine mit Vorspannung gewickelte Zugfeder mit höherer Zugkraft, die einer größeren Drehungsbeanspruchung des Federdrahtes entspricht, belastet werden kann, als die Feder ohne Vorspannung. Wird für Zugfedern ohne Vorspannung als höchst zulässige Drehungsbeanspruchung kd = 50 kg/mm2 für Klaviersaitendraht gewählt, so kann für Zugfedern mit Vorspannung eine höhere Drehungsbeanspruchung bis kd = 60 kg/mm2 zugelassen werden. Diese Werte sind für ruhende Belastung, also für geringe Federspiele, an Federn aus Klaviersaitendraht von 0,8–3 mm Drahtdurchmesser bestimmt worden und sollen für die weitere Betrachtung zugrunde gelegt werden, sie liegen innerhalb der Elastizitätsgrenze. Trägt man die Federung f0 als wagerechte Linie und senkrecht dazu die zu jeder Federung erforderliche Zugkraft P0 als Höhe an, so gibt die so erhaltene rechtwinklige Dreiecksfläche a b c, Bild 1, ein Maß für die Federungsarbeit A0.

Textabbildung Bd. 340, S. 89

Ist die Feder ohne Vorspannung gewickelt, so ist die Federungsarbeit . Bis zur Proportionalitätsgrenze des Federdrahtes wächst die Zugkraft P0 mit der Federung f0 gleichmäßig. Darüber hinaus liegt die Elastizitätsgrenze. Wird die Feder über die Elastizitätsgrenze des Federdrahtes belastet, so erfährt sie eine bleibende Dehnung, die Grade a b geht in eine Kurve über. Innerhalb der Proportionalitätsgrenze des Federdrahtes hat das Verhältnis P0/f0 daher immer den gleichen Wert. Dieser Wert P0/f0 heißt die Federkonstante. . Das ist diejenige Zugkraft |90| in kg, welche die Feder um je einen mm verlängert.

Bei der mit Vorspannung gewickelten Feder bleibt die Vorspannung innerhalb der Elastizitätsgrenze von derselben Größe. In Bild 2 stellt die Fläche a a1 b1 c1 die Federungsarbeit einer Zugfeder mit Vorspannung dar. . In dieser ist a a1 = c c1 die Größe der Vorspannung Pv, die Linie c1 b1 stellt die größte Zugkraft P1 dar, die in der Zugfeder die Federung f1 hervorbringt. Das Rechteck a a1 c c1 gibt ein Maß für die Federungsarbeit der Vorspannung.

Textabbildung Bd. 340, S. 90

Die Tangente des Neigungswinkels der Geraden a1 b1 ist die Federkonstante . Nach den Versuchen darf die mit Vorspannung gewickelte Zugfeder mit einer größeren Zugkraft belastet werden, als die Feder, welche ohne Vorspannung gewickelt ist. Die Federung f1 der mit Vorspannung gewickelten Feder von gleicher Abmessung und gleicher Windungszahl wird aber kleiner als die Federung f0 der Feder ohne Vorspannung f1 > f0.

Textabbildung Bd. 340, S. 90

Zeichnet man die beiden Arbeitsflächen Ao und A1 so übereinander, daß die Nullwerte der Federung und die Federungen f1 und f0 ihrer Richtung nach zusammenfallen, wie Bild 3 zeigt, und verbindet die beiden Punkte b und b1 durch eine Gerade miteinander, verlängert diese bis zum Durchschnitt mit der durch a a1 gehenden Senkrechten, dann stellt die senkrechte Linie a bx die theoretisch größte Vorspannung Px dar, die dem Höchstwert der Drahtbeanspruchung entspricht, bei der die Federung f1 den Grenzwert 0 erreicht. Je größer die Vorspannung Pv gewählt wird, um so kleiner ist die Federung f1. Durch weitere Versuche ist festzustellen, ob die Annahme des geradlinigen Verlaufs der Linie b bx zutrifft. Nach den angestellten Versuchen kann eine bedeutend über die Elastizitätsgrenze hinaus beanspruchte Feder aus Klaviersaitendraht von hoher Bruchfestigkeit, deren Proportionalitätsgrenze bei kd = 50 kg/mm2 lag, dauernd mit einem höheren kd bis zu 100 kg/mm2 beansprucht werden, ohne daß dann eine bleibende Dehnung der Feder eintritt.

Die Federkonstante behält auch in diesem Falle den gleichen Wert.

Federn mit und ohne Vorspannung ergaben das gleiche Ergebnis. Bei gleicher Belastung erfährt die mit Vorspannung gewickelte Feder eine kleinere bleibende Dehnung, als die Feder ohne Vorspannjung, wahrscheinlich, weil der Federdraht beim Wickeln mit Vorspannung stärker überanstrengt, also härter, wird. Um festzustellen, wie sich die Arbeitsflächen zweier Federn gleicher Abmessungen verhalten, von denen die eine mit, die andere ohne Vorspannung gewickelt war,wurde ein Versuch angestellt. Zum Versuch dienten 2 Zugfedern aus Klaviersaitendraht von gleichem Drahtdurchmesser von d = 1,81 mm, annähernd gleichem äußeren Durchmesser D = 24,2 bzw. 24,5 mm und gleicher Windungszahl n = 21,5, deren Konstante K = 0,032 war.

Ergebnis: Die Vorspannung Pv betrug das 0,4fache der Zugkraft P0, die Proportionalitätsgrenze der Feder ohne Vorspannung lag bei kd = 50 kg/mm2, die der Feder mit Vorspannung bei 60 kg/mm2. Dementsprechend war auch die Zugkraft der Feder P1 = 1,2 P0 und deren Federung f1 = 0,8 f0, die Feder mit Vorspannung ergab eine um 25 % größere Arbeitsleistung, als die Feder ohne Vorspannung. Nach der Rechnung ergibt sich das Verhältnis der Federungsarbeiten beider Federn.

Von großer praktischer Bedeutung ist die Frage, bei welcher Vorspannung leistet eine Zugfeder die größte Federungsarbeit.

Textabbildung Bd. 340, S. 90

Im Nullpunkt a, Bild 4, trage man verschiedene Werte der Vorspannung Pv auf bx an, ziehe die zu ab Parallelen bis zum Durchschnittspunkte der Geraden b bx und durch die so erhaltenen Durchschnittspunkte Senkrechte auf die Grundlinie f0.

Trägt man alsdann über die einzelnen Werte von Pv die aus Bild 4 gefundenen Federungsarbeiten

usw., senkrecht als Höhe auf, so erhält man eine Schaulinie Bild 5, aus der ersichtlich ist, daß die größte Federungsarbeit Ax bei einer Vorspannung von ⅔ P0 liegt, wobei die Federung f1 = ⅔ f0 der ohne Vorspannung gewickelten Feder ist.

Textabbildung Bd. 340, S. 90

Die Darstellung ist unter Verwendung der Versuche erfolgt, nach der die Elastizitätsgrenze des Federdrahtes bis 100 kg/mm2 gesteigert werden kann. Durch Rechnung läßt sich die größte Federungsarbeit der mit Vorspannung gewickelten Feder in folgender Weise finden.

Wir setzen in Bild 4 folgende Bezeichnungen:

Px = n Po

Pv = a

Pi = a + b

und finden aus der Aehnlichkeit der Dreiecke, Bild 6: sowie und hieraus

|91|

1)

Alsdann ist die Federungsarbeit:

Textabbildung Bd. 340, S. 91

Die Federungsarbeit A1 soll ein Maximum werden, also ist die erste Ableitung = 0 zu setzen.

n f0 – 2 n f1 + f1 = 0, woraus

3)

Entsprechend den Versuchen, setzen wir n = 2 und finden aus Gleichung 3 die Federung der mit Vorspannung gewickelten Feder, deren Arbeit ein Maximum ist, sowie die zugehörigen Werte

f1 = ⅔ f0

Px = 2 P0

Pv= a = ⅔ P0

P1 = a + b = 4/3 P0

während die Federungsarbeit A0 der Feder ohne Vorspannung A0 = ½ P0 f0 ist.

Aus diesen Ueberlegungen ergibt sich das Verhältnis.

Demnach ist die größte Arbeit, die eine mit Vorspannung gewickelte Feder leisten kann, um ⅓ größer als die Arbeit der gleichen Feder ohne Vorspannung, dabei muß sie eine Vorspannung gleich ⅔ P0 haben, und die Materialbeanspruchung wird 66 ⅔ kg/mm2 betragen.

Bei jeder anderen Vorspannung als ⅔ P0 wird die Federungsarbeit geringer, wie auch Bild 5 zeigt.

Für eine Vorspannung

Pv = 0,4 P0 wird

und für die Vorspannung

Pv = 0,9 P0 wird

Innerhalb dieser Grenzen kann die Federungsarbeit praktisch noch als Größtwert angesehen werden.

Aus diesen Betrachtungen folgt, daß, wenn Zugfedern ohne Vorspannung bei größerer Spielzahl mit einem kd = 35 kg/mm2 beansprucht werden sollen, so können die mit Vorspannung gewickelten Zugfedern um ⅓ höher, also mit 46 kg/mm2 beansprucht werden.

Durch die Verwendung einer Zugfeder mit Vorspannung ist daher eine bis zu 33 % größere Wirtschaftlichkeit zu erreichen.

Suche im Journal   → Hilfe
Alternative Artikelansichten
  • XML
  • Textversion
    Dieser XML-Auszug (TEI P5) stellt die Grundlage für diesen Artikel.
  • BibTeX
Feedback

Art des Feedbacks:
Ihre E-Mail-Adresse:
Anmerkungen: